Streptomyces sp. mitigates abiotic stress response and promotes plant growth
Windy Manullang 1, A-E
,   Huey-wen Chuang 1, A,E-F  
More details
Hide details
Department of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Huey-wen Chuang   

Department of Bioagricultural Science, National Chiayi University, Syuefu Rd 300, 60004, Chiayi, Taiwan
Submission date: 2020-01-29
Acceptance date: 2020-05-12
Online publication date: 2020-08-18
Journal of Plant Protection Research 2020;60(3):263–274
Coexisting microorganisms are abundant in nature. Plant growth promoting rhizobacteria (PGPR) is a group of beneficial microorganism living around the roots of plants which are able to confer beneficial effects on plant growth. Streptomyces sp. is a gram-positive bacteria as PGPR that can promote plant growth and enhance tolerance in adverse environment. This research was aimed to study the effects of plant growth promotion and stress tolerance of Streptomyces sp. in Arabidopsis and Brassica sp. The amount of indole-acetic acid (IAA) and phosphate solubility were assessed from isolated bacterial. Plant growth promotion was examined in 10-days old seedling with three independent experiments. Our results showed that Streptomyces sp. produced moderate levels of IAA and it was able to solubilize phosphate. Inoculation of Streptomyces sp. enhanced lateral root number, fresh weight and chlorophyll content in Arabidopsis thaliana. Moreover, the inoculation of Streptomyces sp. significantly increased vegetative growth on Arabidopsis and Brassica sp. by producing higher fresh weight and chlorophyll content. Streptomyces sp. also enhanced tolerance to abiotic stress in Arabidopsis and Brassica sp. by increasing fresh weight under condition of salt and heat stress. Under salt stress, inoculation of Streptomyces sp. in Arabidopsis induced activity of catalase enzyme and decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) production. In the molecular levels, Streptomyces sp. induced protein accumulations in Arabidopsis including nitrogen assimilation (GS1), carbohydrate metabolism (cFBPase), and the light-harvesting chlorophyll (Lhcb1) protein.
Thank you for the research funding from Huey Wen Chuang Laboratory, Department of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan.
The authors have declared that no conflict of interests exist.
Aebi H. 1984. Catalase in vitro. Methods in Enzymology 105: 121–126. DOI: https://doi.org/10.1016/S0076-....
Ahemad M., Kibret M. 2013. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University Science 26 (1): 1–20. DOI: https://doi.org/10.1016/j.jksu....
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215 (3): 403–410. DOI: https://doi.org/10.1016/S0022-....
Bhardwaj D., Ansari M.W., Sahoo R.K., Tuteja N. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 13: 66. DOI: https://doi.org/10.1186/1475-2....
Cassán F., Vanderleyden J., Spaepen S. 2014. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation 33: 440–459. DOI: https://doi.org/10.1007/s00344....
Cho M.H., Jang A., Bhoo S.H., Jeon J.S., Hahn T.R. 2012. Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhance the source capacity of transgenic Arabidopsis plants. Photosynthesis Research 111 (3): 261−268. DOI: https://doi.org/10.1007/s11120....
Delong J.M., Prange R.K., Hodges D.M., Forney C.F., Bishop M.C., Quilliam M. 2002. Using a modified ferrous oxidation-xylenol orange (FOX) assay for detection of lipid hydroperoxides in plant tissue. Journal of Agricultural and Food Chemistry 50 (2): 248–254. DOI: https://doi.org/10.1021/jf0106....
de Vasconcellos R.L.F., da Silva M.C.P., Ribeiro C.M., Cardoso E.J.B.N.2010. Isolation and screening for plant growth-promoting (PGP) actinobacteria from Araucaria angustifolia rhizosphere soil. Science Agricola 67 (6): 743–746. DOI: http://dx.doi.org/10.1590/S010....
Evangelista Z., Martínez. 2013. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World Journal of Microbiology and Biotechnology 30 (5): 1639–1647. DOI: https://doi.org/10.1007/s11274....
Gopalakrishnan S., Srinivas V., Vidya M.S., Rathore A. 2013. Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. Springer Plus 2: 574. DOI: https://doi.org/10.1186/2193-1....
Jog R., Pandya M., Nareshkumar G., Rajkumar S. 2014. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160 (4): 778−788. DOI: https://doi.org/10.1099/mic.0.....
Kalayu G. 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy 2019: ID 4917256. DOI: https://doi.org/10.1155/2019/4....
Karagöz H., Çakmakçı R., Pour A.H., Kodaz S. 2018. Alleviation of water stress and promotion of the growth of sugar beet (Beta vulgaris L.) plants by multi-traits rhizobacteria. Applied Ecology and Environmental Research 16 (5): 6801−6813. DOI: http://dx.doi.org/10.15666/aee....
Kusvuran S., Kiran S., Ellialtioglu S.S. 2016. Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. Intech Open 21: 481−506. DOI: 10.5772/62235.
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. 2007. Clustal W and clustal X version 2.0. Bioinformatics 23 (21): 2947–2948. DOI: https://doi.org/10.1093/bioinf....
Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350–382. DOI: https://doi.org/10.1016/0076-6....
Ma Y., Prasad M.N.V., Rajkumar M., Freitas H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances 29 (2): 248–258. DOI: https://doi.org/10.1016/j.biot....
Ma Y., Rajkumar M., Zhang C., Freitas H. 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174: 14–25. DOI: https://doi.org/10.1016/j.jenv....
Ma Y., Vosátka M., Freitas H. 2019. Editorial: Beneficial microbes alleviate climatic stresses in plants. Frontiers Plant Science 16: 595. DOI: doi.org/10.3389/fpls.2019.0059....
Mosttafiz S., Rahman M., Rahman M. 2012. Biotechnology: Role of microbes in sustainable agriculture and environmental health. The Internet Journal of Microbiology 10 (1): 1937−8289. DOI: 10.5580/2b91.
Mutlu F., Yurekli F., Kirecci O., Dengiz F. 2018. Investigation of antioxidant enzyme activities in wheat (Triticum aestivum L.) cultivars depending on nitric oxide application under cadmium stress. Fresenius Environmental Bulletin 27 (1): 436−445.
Nassar A.H., El-Tarabily K.A., Sivasithamparam K. 2003. Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine producing isolate of Streptomyces griseoluteus. Plant Growth Regulation 40 (2): 97–106. DOI: https://doi.org/10.1023/A:1024....
Olanrewaju O.S., Babalola O.O. 2019. Streptomyces: implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology 103: 1179–1188. DOI: https://doi.org/10.1007/s00253....
Pakar N., Anosheh H.P., Emam Y., Pessarakli M. 2016. Barley growth, yield, antioxidant enzymes, and ion accumulation affected by PGRs under salinity stress conditions. Journal of Plant Nutrition 39 (10): 1372−1379. DOI: 10.1080/01904167.2016.1143498.
Patten C.L., Glick B.R. 2002. Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Applied and Environmental Microbiology 68 (8): 3795–3801. DOI: https://doi.org/10.1128/AEM.68....
Poupin M.J., Greve M., Carmona V., Pinedo I. 2016. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN. Frontiers Plant Science 12 (7): 492. DOI: https://doi.org/10.3389/fpls.2....
Rossatto T., do Amaral M.N., Benitez L.C., Vighi I.L., Braga E.J.B., de Magalhães Júnior A.M., Maia M.A.C., da Silva Pinto L. 2017. Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. Physiology and Molecular Biology of Plants 23 (4): 865–875. DOI: 10.1007/s12298-017-0467-2.
Salla T.D., Silva R., Astarita L.V., Santarém E.R. 2014. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants. Plant Physiology and Biochemistry 85: 14−20. DOI: https://doi.org/10.1016/j.plap....
Sharma I., Ahmad P. 2014. Catalase a versatile antioxidant in plants. p. 131−148. In: „Oxidative Damage to Plants”. Chapter 4. (P. Ah-mad, ed.). Academic Press, 672 pp. DOI: 10.1016/B978-0-12-799963-0.00004-6.
Shepherd M.D., Kharel M.K., Bosserman M.A., Rohr J. 2010. Laboratory maintenance of Streptomyces species. Current Protocols in Microbiology. Chapter 10: Unit 10E.1. DOI: https://doi.org/10.1002/978047....
Srivastava S., Patel J.S., Singh H.B., Sinha A., Sarma B.K. 2015. Streptomyces rochei SM3 induces stress tolerance in chickpea against Sclerotinia sclerotiorum and NaCl. Journal of Phytopathology 163 (7–8): 583–592. DOI: https://doi.org/10.1111/jph.12....
Tandon H.L.S., Cescas M.P., Tyner E.H. 1968. An acid-free vanadate-molybdate reagent for the determination of total phosphorus in soils. Soil Science Society of America Journal 32 (1): 48–51. DOI: https://doi.org/10.2136/sssaj1....
Wilson K. 2001. Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology. Chapter 2: Unit 2.4. DOI: https://doi.org/10.1002/047114....