ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Allelopathic activities of Solanum elaeagnifolium Cav. parts in an extensive variety of monocots and dicots plant species
  • Invasive Solanum elaeagnifolium Cav. has a significant impact in soil physics, chemical, and biological properties
  • Invasive Solanum elaeagnifolium Cav. has potent Allelopathic activities in its fruits mucilage as compared with other parts
  • Dose Response Relationship generates biological information about the invading impacts of invasive Solanum elaeagnifolium Cav which is diverse across extracts types, concentrations, and the target species
  • Phenolic composition of Solanum elaeagnifolium Cav. analyzed qualitatively and quantitatively by LC-MS
KEYWORDS
TOPICS
ABSTRACT
Solanum elaeagnifolium Cav. is known to be one of the most invasive species worldwide. In this study, laboratory and greenhouse experiments were carried out to investigate the allelopathic properties of S. elaeagnifolium vegetative parts, root parts, fruit mucilage, and exudate extracts on plant communities and soil properties. In addition, the extract profiles of allelochemicals were quantified and their influence on soil properties and microorganisms was determined. Overall, the allelopathic performance of S. elaeagnifolium was established depending on the extract types, used concentrations, and target species. The doseresponse activity indicated that vegetative parts extract showed the greatest allelopathic potential followed by root parts extract. Subsequently, mucilage extract had a moderate inhibitory potential, while root exudates showed the least activity. The same trend with slight response was detected in soil properties of pH and EC properties. Polyphenols, in the range of 5.70–0.211 mg · g–1 and flavonols, in the range of 2.392–0.00 mg · g–1, were found in the analyzed samples extracted by ethyl acetate using LC-DAD-MS. The total phenol amount was 1.67 to 1.89 in the rhizosphere and 0.53 to 087 mg · g–1 in non-rhizosphere soils. Solanum elaeagnifolium exhibited a greater significant suppression of fungi count in both high and low-density areas than in rhizosphere bacteria. In conclusion, the strong and broadspectrum allelopathic potentials may enhance the ability of S. elaeagnifolium to impact seed germination and seedling growth of neighboring species. These biochemical weapons may play a critical role to facilitate their invasion and establishment in new agroecosystems.
FUNDING
This research was funded by the Science & Technology Development Fund (STDF) of Egypt, Grant No. 34767.
RESPONSIBLE EDITOR
Łukasz Sobiech
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (79)
1.
Alhemedy A., Nader S., Ebrahim B. 2016. Impact of silverleaf nightshade (Solanum elaeagnifolum Cav.) organs powder on germination and growth of wheat durum (Cham-5). International Journal of ChemTech Research 9 (7): 619–633.
 
2.
Amer W.M., Abouwarda A.M., El-garf I.A., Dawoud G.T.M., Abdelmohsen G. 2013. Phytochemical composition of Solanum elaeagnifolium Cav. and its antibacterial activity. International Journal of Biology, Pharmacy and Applied Science 2: 1282–1306.
 
3.
Ambika S.R. 2013. Multifaceted attributes of allelochemicals and mechanism of allelopathy. p. 389–405. In: “Allelopathy: Current Trends and Future Applications” (Z.A. Cheema, M. Farooq, A. Wahid, eds.). Springer, Berlin, Heidelberg, Germany. DOI: https://doi.org/10.1007/978-3-....
 
4.
Badawy A., Zayed R., Ahmed S., Hassanean H. 2013. Phytochemical and pharmacological studies of Solanum elaeagnifolium growing in Egypt. Journal of Natural Products 6: 156–167.
 
5.
Bais H.P., Vepachedu R., Gilroy S., Callaway R.M., Vivanco J.M. 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 30: 1377–1380.
 
6.
Baležentienė L. 2015. Immediate allelopathic effect of two invasive Heracleum species on acceptor-germination. Acta Biologica Universitatis Daugavpiliensis 15 (1): 17–26.
 
7.
Balah M.A. 2011. Impact of mixing glyphosate with multi additives on weeds control and soil microorganism. Journal of Plant Protection and Pathology 2 (10): 791–804. DOI: 10.21608/jppp.2011.86598.
 
8.
Balah M.A. 2015. Herbicidal activity of constituents isolated from Solanum elaeagnifolium. Journal of Crop Protection 4 (4): 487–496.
 
9.
Balah M.A. 2020. Weed control ability of egyptian natural products against annual, perennial and parasitic weeds. Acta Ecologica Sinica 40: 492–499. DOI: https://doi.org/10.1016/j.chna....
 
10.
Balah M.A., Abdelrazik G.M. 2020. Pesticidal activity of Solanum elaeagnifolium Cav. leaves against nematodes and perennial weeds. Acta Ecologica Sinica 40: 373–379. DOI: https://doi.org/10.1016/j.chna....
 
11.
Bekkouche K., Markouk M., Larhsini M., Jana M., Lazrek H.B. 2000. Molluscicidal properties of glycoalkaloid extracts from Moroccan Solanum species. Phytotherapy Research 14: 366–367.
 
12.
Boyd J.W., Murray D.S. 1982. Growth and development of silverleaf nightshade (Solanum elaeagnifolium). Weed Science 30: 238–243. DOI: https://doi.org/10.1017/S00431....
 
13.
Boyd J.W., Murray D.S., Tyrl R.J. 1984. Silverleaf nightshade, Solanum elaeagnifolium, origin, distribution, and relation to man. Economic Botany 38 (2): 210–217.
 
14.
Bothma A. 2002. Alleopathic potential of silverleaf nightshade (Solanum elaeagnifolium Cav.). MSc (Agric) Horticulture. University of Pretoria, Pretoria, South Africa.
 
15.
Brunel S. 2011. Pest risk analysis for Solanum elaeagnifolium and international management measures proposed. EPPO Bulletin 41: 232–242.
 
16.
Buck W.B, Dollahite J.W., Allen T.J. 1960. Solanum elaeagnifolium, silver-leafed nightshade, poisoning in livestock. Journal of the American Veterinary Medical Association 137 (6): 348–351.
 
17.
Callaway R.M., Aschehoug E. 2000. Invasive plant versus their new and old neighbors: a mechanism for exotic invasion. Science 290: 521–523. DOI: 10.1126/science.290.5491.521.
 
18.
Callaway R.M., Ridenour W. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment 2: 436–443. DOI: https://doi.org/10.1890/1540-9....
 
19.
Callaway R.M., Cipollini D., Barto K., Thelen G.C., Hallett S.G., Prati D., Stinson K., Klironomos J. 2008. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89: 1043–1055. DOI: https://doi.org/10.1890/07-037....
 
20.
Chauhan B.S., Johnson D.E. 2010. The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy 105: 221–262. DOI: https://doi.org/10.1016/S0065-....
 
21.
Chiang K.Y., Wang Y.N., Wang M. K., Chiang P.N. 2006. Low-molecular-weight organic acids and metal speciation in rhizosphere and bulk soils of a Temperate Rain Forestin Chitou, Taiwan. Taiwan Journal of Forest Science 21 (3): 327–337.
 
22.
Chen P.K., Leather G.R. 1990. Plant growth regulatory activities of artemisinin and its related compounds. Journal of Chemical Ecology 16: 1867–1876. DOI: https://doi.org/10.1007/BF0102....
 
23.
Chen B.M., Liao H.X., Chen W.B., Wei H.J., Peng S.L. 2017. Role of allelopathy in plant invasion and control of invasive plants. Allelopathy Journal 41 (2): 155–166.
 
24.
Chiale A., Cabrera J.L., Juliani H.R. 1991. Kaempferol 3-(6-czscinnamoyl glucoside) from Solanum elaeagnifolium. Phytochemistry 30: 1042–1043.
 
25.
Chou C.H. 1990. The role of allelopathy in agroecosystems: Studies from tropical Taiwan. p. 105–121. In: “Agroecology: Researching the Ecological Basis for Sustainable Agriculture” (S.R. Gliessman, ed.). Springer, New York, USA. DOI: https://doi.org/10.1007/978-1-....
 
26.
Colmenares A.P., Alarcon L., Rojas L.B., Mitaine-Offer A.C., Pouységu L., Quideau S., Paululat T., Usubillaga A., Lacaille-Dubois M.A. 2010. New steroidal alkaloids from Solanum hypomalacophyllum. Natural Product Communications 5: 1743–1746.
 
27.
Delabays N., Mermillod G., De Joffrey J.P., Bohren C. 2004. Demonstration, in cultivated fields, of the reality of the phenomenon of allelopathy. International Conference on Weed Biology XII: 97–104.
 
28.
Duke S.O., Lydon J. 1993. Natural phytotoxins as herbicides. p. 111–121. In: “Pest Control with Enhanced Environmental Safety” (S.O. Duke, J.J. Menn, J.R. Plimmer, eds.). American Chemical Society Symposium Series 524. Washington, DC.
 
29.
Duke S., Vaughn K.C., Croom E.M., Elsohly H.N. 1987. Artemisinin, a constituent of annual wormwood, is selective phytotoxin. Weed Science 35: 499–505.
 
30.
Einhellig F.A. 1996. Interactions involving allelopathy in cropping systems. Agronomy Journal 88: 886–893. DOI: https://doi.org/10.2134/agronj....
 
31.
Grazi M., Myers G.A. 1990. The action of steroidal alkaloids on the ground meristem tissue of the root axis of lettuce seedlings. Environmental and Experimental Botany 30: 235–242. DOI: https://doi.org/10.1016/0098-8....
 
32.
Hierro J.L., Callaway R.M. 2003. Allelopathy and exotic plant invasion. Plant and Soil 256: 29–39. DOI: https://doi.org/10.1023/A:1026....
 
33.
Hierro J.L., Maron J.L., Callaway R.M. 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology 93: 5–15. DOI: https://doi.org/10.1111/j.0022....
 
34.
Hackett N.M., Murray D.S., Weeks D.L. 1987. Interference of silverleaf nightshade (Solanum elaeagnifolium) on Spanish peanuts (Arachis hypogaea). Peanut Science 14: 39–41.
 
35.
Hang W., Ge Y.Y., Liu H.Y., Jiang H.R., Zhang S.H., Tao Y. 2020. Effects of Brachythecium plumosum and Plagiomnium venustum on seed germination and seedling growth of invasive plants. Ying Yong Sheng Tai Xue Bao (The Journal of Applied Ecology) 31 (7): 2271–2278. DOI: 10.13287/j.1001-9332.202007.010 (in Chinese).
 
36.
Heap J.W., Carter R.J. 1999. The biology of Australian weeds. Solanum elaeagnifolium Cav. Plant Protection Quarterly 14: 2–12.
 
37.
Houda M., Derbré S., Jedy A., Tlili N., Legault J., Richomme P., Limam F., Saidani-Tounsi M. 2014. Combined antiages and antioxidant activities of different solvent extracts of Solanum elaeagnifolium Cav. (Solanacea) fruits during ripening and related to their phytochemical compositions. EXCLI Journal 13: 1029–1042.
 
38.
Hu F., Kong C.H. 1997. Allelopathy of Ageratum conyzoides. Allelopathy of Ageratum conyzoides aqueous extract and isolation and identification of its allelochemicals. Chinese Journal of Applied Ecology 8 (3): 304–308.
 
39.
Kato-Noguchi H. 2020. Involvement of allelopathy in the invasive potential of Tithonia diversifolia. Plants (Basel) 9 (6): 766. DOI: 10.3390/plants9060766.
 
40.
Keeler R.F., Baker D.C., Gaffield W. 1990. Spirosolane-containing Solanum species and induction of congenital craniofacial malformations. Toxicon 28: 873–884. DOI: https://doi.org/10.1016/0041-0....
 
41.
Kimura F., Sato M., Kato-Noguchi H. 2015. Allelopathy of pine litter: delivery of allelopathic substances into forest floor. Journal of Plant Biology 58: 61–67. DOI: https://doi.org/10.1007/s12374....
 
42.
Knapp S., Sagona E., Carbonell A.K.Z., Chiarini F. 2017. A revision of the Solanum elaeagnifolium clade (Elaeagnifolium clade; subgenus Leptostemonum, Solanaceae). PhytoKeys (84): 1–104. DOI: 10.3897/phytokeys.84.12695.
 
43.
Jandova K., Dostal P., Cajthaml T. 2015. Searching for Heracleum mantegazzianum allelopathy in vitro and in a garden experiment. Biological Invasions 17 (4): 987–1003. DOI: https://doi.org/10.1007/s10530....
 
44.
Johnson L.F., Curl E.A., Band J. H., Fribourg H.A. 1960. Methods for studying soil microflora-plant disease relationships. Burgess, Minneapolis, 178 pp.
 
45.
Lemerle D., Leys A.R. 1991. Control of silverleaf nightshade (Solanum elaeagnifolium Cav.) increases the grain yield of wheat. Australian Journal of Experimental Agriculture 31: 233–236. DOI: https://doi.org/10.1071/EA9910....
 
46.
Li W., He S.Q., Cheng X.P., Song W.H. 2017. Role of allelopathy in plant invasions in natural conditions. Allelopathy Journal 41 (2): 249–258.
 
47.
Inderjit 2002. Allelopathic effect of Pluchea lanceolate on growth and yield components of mustard (Brassica juncea) and its influence on selected soil properties. Weed Biology and Management 2: 200–204.
 
48.
Inderjit, Seastedt T.R., Callaway R.M., Pollock J.L., Kaur J. 2008. Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches. Biological Invasions 10 (6): 87–890.
 
49.
Mack R.N., D’Antonio C.M. 1998. Impacts of biological invasions on disturbance regimes. Trends in Ecology and Evolution 13: 195–198.
 
50.
Majumdar S., Sanwal U., Inderjit 2017. Interference potential of Sorghum halepense on soil and plant seedling growth. Plant and Soil 418 (1–2): 219–230. DOI: https://doi.org/10.1007/s11104....
 
51.
Martens D.A. 2002. Identification of phenolic acid composition of alkali-extracted plants and soils. Soil Science Society of America Journal 66: 1240–1248.
 
52.
Mekki M. 2007. Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). EPPO Bulletin 37: 114–118.
 
53.
Mkula N.P. 2006. Allelopathic interference of silverleaf nightshade (Solanum elaeagnifolium Cav.) with the early growth of cotton (Gossypium hirsutum L.). Available on: http://upetd.up.ac.za/thesis/a... [Accessed: 07 August 2014].
 
54.
Nelson C.J. 1996. Allelopathy in cropping systems. Agronomy Journal 88: 991.
 
55.
Ning L., Yu F.H., van Kleunen M. 2016. Allelopathy of a native grassland community as a potential mechanism of resistance against invasion by introduced plants. Biological Invasions 18 (12): 3481–3493. DOI: https://doi.org/10.1007/s10530....
 
56.
Oduor A.M.O., van Kleunen M., Stift M. 2020. Allelopathic effects of native and invasive Brassica nigra do not support the novel-weapons hypothesis. American Journal of Botany 107 (8): 1106–1113. DOI: https://doi.org/10.1002/ajb2.1....
 
57.
Ott R.L., Longnecker M. 2001. An Introduction to Statistical Methods and Data Analysis. 5th ed Duxbury Press: Thomson Learning, USA.
 
58.
Parsons W.T. 1981. Noxious Weeds of Victoria. Inkata Press, Melbourne, AU.
 
59.
Parepa M., Bossdorf O. 2016. Testing for allelopathy in invasive plants: it all depends on the substrate. Biological Invasions 18 (10): 2975–2982. DOI: https://doi.org/10.1007/s10530....
 
60.
Parkinson P., Gray T.R.G., William S.T. 1971. Methods for Studying the Ecology of Soil Microorganisms. Blackwell Scientific Publication Oxford, UK, 116 pp.
 
61.
Rice E.L. 1974. Allelopathy (Physiological Ecology). 2nd ed. Academic Press, New York, NY, USA, 368 pp.
 
62.
Scavo A., Pandino G., Restuccia A., Lombardo, S., Pesce G.R., Mauromicale G. 2019a. Allelopathic potential of leaf aqueous extracts from Cynara cardunculus L. on the seedling growth of two cosmopolitan weed species. Italian Journal of Agronomy 14 (2): 78–83. DOI: https://doi.org/10.4081/ija.20....
 
63.
Scavo A., Abbate C., Mauromicale G. 2019b. Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant Soil 442: 23–48. DOI: https://doi.org/10.1007/s11104....
 
64.
Scavo A., Restuccia A., Pandino G., Onofri A., Mauromicale G. 2018. Allelopathic effects of Cynara cardunculus L. leaf aqueous extracts on seed germination of some Mediterranean weed species. Italian Journal of Agronomy13: 119–125. DOI: https://doi.org/10.4081/ija.20....
 
65.
Silva T.M., Batista M.M., Camara C.A., Agra M.F. 2005. Molluscicidal activity of some Brazilian Solanum spp. (Solanaceae) against Biomphalaria glabrata. Annals of Tropical Medicine and Parasitology 99 (4): 419–425. DOI: https://doi.org/10.1179/136485....
 
66.
Sun F., Li S., He D., Cao G., Ni X., Tai G., Wang D. 2010. Effects of glycoalkaloids from Solanum plants on cucumber root growth. Phytochemistry 71 (13): 1534–1538. DOI: https://doi.org/10.1016/j.phyt....
 
67.
Sparg S.G., Light M.E., Van Staden J. 2004. Biological activities and distribution of plant saponins. Journal of Ethnopharmacology 94: 219–243. DOI: https://doi.org/10.1016/j.jep.....
 
68.
Täckholm V. 1974. Students’ Flora of Egypt. 2nd ed. Anglo-Egyptian Bookshop, Cairo, Egypt: 472–474.
 
69.
Thorpe A.S., Thelen G.C., Diaconu A., Callaway R.M. 2009. Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. Journal of Ecology 97: 641–645. DOI: https://www.jstor.org/stable/2....
 
70.
Uddin M.N., Robinson R.W., Buultjens A., Al Harun M.A.Y., Shampa, S.H. 2017. Role of allelopathy of Phragmites australis in its invasion processes. Journal of Experimental Marine Biology and Ecology 486: 237–244. DOI: https://doi.org/10.1016/j.jemb....
 
71.
Uludag A., Gbehounou G., Kashefi J., Bouhache M., Bon M.C., Bell C., Lagopodi A.L. 2016. Review of the current situation for S. elaeagnifolium in the Mediterranean Basin. Bulletin OEPP/EPPO Bulletin 46 (1): 139–147.
 
72.
Weidenhamer J.D., Callaway R.M. 2010. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology 36 (1): 59–69. DOI: 10.1007/s10886-009-9735-0.
 
73.
Wardle D.A., Nicholson K.S., Ahmed M., Rahman A. 1994. Interference effects of the invasive plant Carduus nutans L. against the nitrogen fixation ability of Trifolium repens L. Plant and Soil 163: 287–297.
 
74.
Weber E., Li B. 2008. Plant invasions in China: what is to be expected in the wake of economic development? BioScience 58: 437–444. DOI: https://doi.org/10.1641/B58051....
 
75.
Wollenweber E., Dorr M. 1995. Exudate flavonoids in some Solanaceae. Biochemical Systematics and Ecology 23: 457–458.
 
76.
Yan Y., Xian X., Jiang M., Wan F. 2017. Biological invasion and its research in China: an overview. p. 3–19. In: “Biological Invasions and its Management in China” (F. Wan, M. Jiang, A. Zhan, eds.). Invading Nature – Springer Series in Invasion Ecology. Vol. 11. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94....
 
77.
Zheng K.M., Shen Y., Fang Y.M., Bhowmik P.C. Li Y. 2017. Effects of Bidens pilosa shoot parts on chlorophyll fluorescence in Pteris multifida gametophyte. Allelopathy Journal 42 (2): 231–238.
 
78.
Zhang Z., Liu Y., Yuan L., Weber E., Van Kleunen M. 2020. Effect of allelopathy on plant performance: a meta-analysis. Ecology Letters 24: 348–362. DOI: https://doi.org/10.1111/ele.13....
 
79.
Zygadlo J.A. 1994. A comparative study of sterols in oil seeds of Solanum species. Phytochemistry 35: 163–167. DOI: https://doi.org/10.1016/S0031-....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top