ORIGINAL ARTICLE
Circadian changes in susceptibility of young honeybee workers to intoxication by pyrethroid, carbamate, organophosphorus, benzoyl urea and pyridine derivative insecticides
 
More details
Hide details
1
Department of Biotechnology, University of Rzeszow Werynia 502, 36-100 Kolbuszowa, Poland
 
Journal of Plant Protection Research 2012;52(2):286–289
KEYWORDS:
TOPICS:
ABSTRACT:
In the years 2009 and 2010, in the apiaries surrounding Tarnobrzeg and Leżajsk, Poland (close to the Carpathian Mountains) research was carried out on diurnal changes in the sensitivity of young honey bee ( Apis mellifera ) workers to insecticides from various chemical groups: pyrethroids (esfenvalerate, cyhalothrin, alpha-cypermethrin, beta-cyfluthrin, deltamethrin), derivatives of pyridine (pyriproxyfen), carbamate (pirimicarb), organophosphate (diazinon), and benzoyl urea derivative (teflubenzuron). The analyses consisted of intoxicating subsequent groups of honey bees in 2-hour intervals, for a period of 24 hours with selected xenobiotics. The results received indicate that the honey bee shows a statistically significant susceptibility to insecticides, changing in the diurnal rhythm.
CONFLICT OF INTERESTS:
The authors have declared that no conflict of interests exist.
CORRESPONDING AUTHOR:
Bartosz Piechowicz
Department of Biotechnology, University of Rzeszow Werynia 502, 36-100 Kolbuszowa, Poland
 
REFERENCES (38):
1. Bacandritsos N., Granato A., Budge G., Papanastasiou I., Roinioti E., Caldon M., Falcaro C., Gallina A., Mutinelli F. 2010. Sudden deaths and colony population decline in Greek honey bee colonies. J. Invertebr. Pathol. 105 (3): 335–340.
2. Barrozo R.B., Schilman P.H., Minoli S.A., Lazzari C.R. 2004. Daily rhythms in disease vector insect. Biol. Rhythm Res. 35 (1/2): 79–92.
3. Bonning B.C. 2009. The dicistroviridae: an emerging family of invertebrate viruses. Virol. Sin. 24 (5): 415–427.
4. Desneux N., Decourtye A., Delpuech J.M. 2007. The sublethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol. 52: 81–106.
5. Devlin P.F., Kay S.A. 2001. Circadian photoperception. Ann. Rev. Physiol. 63: 677–694.
6. Eesa N.M., Cutkomp L.K. 1995 Pesticide chronotoxicity to insects and mites: an overview. J. Islamic Academy Sci. 8 (1): 21–28.
7. Eck van W.H. 1979. Mode of action of two benzoylphenyl ureas as inhibitors of chitin synthesis in insects. Insect Biochem. 9 (3): 295–300.
8. Frisch B., Koeniger N. 1994. Social synchronization of the activity rhythms of honeybees within a colony. Behav. Ecol. Sociobiol. 35: 91–98.
9. Fuchikawa T., Shimizu I. 2007. Effects of temperature on circadian rhythm in the Japanese honeybee, Apis cerana japonica. J. Insect Physiol. 53: 1179–1187.
10. Fukuto T.R. 1990. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 87: 245–254.
11. Giebultowicz J.M. 1999. Insect circadian clocks: is it all in their heads? J. Insect Physiol. 45: 791–800.
12. Gilbert S.S., Heuvel van den C.J., Ferguson S.A., Dawson D. 2004. Thermoregulation as a sleep signalling system. Sleep. Med. Rev. 8: 81–93.
13. Hoban-Higgins T.M., Alpatov A.M., Wassmer G.T., Ritveld W.J., Fuller C.A. 2003. Gravity and light effects on the circadian clock of a desert beetle Trigonoscelis gigas. J. Insect Physiol. 49: 671–675.
14. Huang Z.-Y., Otis G.W. 1991. Inspection and feeding of larvae by worker honey bees (Hymenoptera: Apidae): effect of starvation and food quantity. J. Insect Behav. 4: 305–317.
15. Jamali B., Ibrahim G., Bouet G., Khan M.A., Allain P., Thanh X.D. 1998. Spring time and autumn time toxic effects of cooper(II),3-(2-Furyl)prop-2-enal semicarbazone and [CuCl2(FASC)2] complex in mice. Biol. Rhythm Res. 29 (3): 229–236.
16. Johnson R.M., Ellis M.D., Mullin C.A., Frazier M. 2010. Pesticides and honey bee toxicity – USA. Apidologie 41: 312–331.
17. Johnson R.M., Evans J.D., Robinson G.E., Berenbaum M.R. 2009. Changes in transcript abundance relating to colony Collapse Disorder in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. 106: 14790–14795.
18. Kronfeld-Shor N., Dayan T. 2003. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34: 153–181.
19. Lindauer M. 1952. Ein beitrag zur frage der arbeitsteilung im bienenstaat. Z. Vergl. Physiol. 34: 299–345.
20. Mikulecky M., Bounias M. 1997. Worker honeybee hemolymph lipid composition and synodic lunar cycle periodicities, Brazil. J. Med. Biol. Res. 30: 275–279.
21. Mikulecky M., Rovensky J. 2000. Gout attacks and lunar cycle. Med. Hypotheses 55 (1): 24–25.
22. Moore D., Rankin M.A. 1985. Circadian locomotor rhythms in individual honeybees. Physiol. Entomol. 10: 191–197.
23. Moore D., Rankin M.A. 1993. Light and temperature entrainment of a locomotor rhythm in honeybees. Physiol. Entomol. 18: 271–278.
24. Moore D., Siegfried D., Wilson R., Rankin M.A. 1989. The influence of time of day on the foraging behavior of the honeybee, Apis mellifera. J. Biol. Rhythms 4: 305–325.
25. Moore D., Angel J.E., Cheeseman I.E., Fahrbach S.E., Robinson G.E. 1998. Timekeeping in the honey bee colony: integration of circadian rhythms and division of labor. Behav. Ecol. Sociobiol. 43: 147–160.
26. Naug D. 2009. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 142: 2369–2372.
27. Nijland M.J.M., Hepburn H.R. 1985. Ontogeny of a circadian rhythm in the cluster temperature of honeybees. S. Afr. J. Sci. 81: 100–101.
28. Page T.L. 1985. Circadian organization in cockroaches: effects of temperature cycles on locomotor activity. J. Insect Physiol. 31 (3): 235–242.
29. Paxton R.J. 2010. Does infection by Nosema Cerance cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? J. Apis. Res. 49 (1): 80–84.
30. Pittendrigh C.S. 1993. Temporal organization: reflections of a Darwinian clockwatcher. Annu. Rev. Physiol. 55: 17–54.
31. Pszczolkowski M.A., Dobrowolski M. 1999. Circadian dynamics of locomotor activity and deltamethrin susceptibility in the pine weevil, Hylobius abietis. Phytoparasitica 27 (1): 19–25.
32. Refinetti R. 1997. The effect of ambient temperature on the body temperature rhythm of rats, hamsters, gerbils, and three shrews, J. Therm. Biol. 22 (4/5): 281–284.
33. Rosato E., Kyriacou C.P. 2002. Origins of circadian rhythmicity. J. Biol. Rhythm 17 (6): 506–511.
34. Soderlund D., Clark J.M., Sheets L.P., Mullin L.S., Piccirillo V.J., Sargent D., Stevens J.T., Weiner M.L. 2002. Mechanism of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171: 3–59.
35. Spangler H.G. 1972. Daily activity rhythms of individual worker and drone honey bees. Ann. Entomol. Soc. Am. 65: 1072–1075.
36. Stindl R., Stindl W. 2010. Vanishing honey bees: is the dying of adult worker bees a consequence of short telomeres and premature aging? Med. Hypotheses 75: 387–390.
37. Underwood R., van Engelsdorp D. 2007. Colony Collapse disorder: have we seen this before? Bee Cult. 35: 13–18.
38. Vandame R., Palacio M.A. 2010. Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping? Apidologie 41: 243–255.
eISSN:1899-007X
ISSN:1427-4345