ORIGINAL ARTICLE
Droplet size classification of air induction flat fan nozzles
 
More details
Hide details
1
West Central Research and Extension Center, University of Nebraska-Lincoln 402 West State Farm Road, North Platte, NE 69101-7751, USA
2
Lincoln University, Engineering Drive, Christchurch 7640, New Zealand
3
he University of Queensland, Gatton, Queensland 4343, Australia
CORRESPONDING AUTHOR
Zbigniew Czaczyk
West Central Research and Extension Center, University of Nebraska-Lincoln 402 West State Farm Road, North Platte, NE 69101-7751, USA
Submission date: 2012-04-10
Acceptance date: 2012-08-24
 
Journal of Plant Protection Research 2012;52(4):415–420
KEYWORDS
TOPICS
ABSTRACT
Measurements were made of the droplet size for a series of air induction flat fan nozzles produced by Marian Mikołajczak Agro Technology (MMAT) and Coorstek. The MMAT nozzles, according to International Organization for Standardization (ISO) standard sizes, are typical single jet (long body, 37 mm) with 025, 03, and 04 orifice sizes; (short body, 21 mm) with 02, 025, 03 and 04 orifice sizes; and twin jet (short body, 21 mm) with 03 and 04 orifice sizes. Ceramic air induction flat fan nozzles of the Albuz AVI series (Coorstek, France) with the orifice size 01, 02 and 03 were tested. The sprays were described using the following droplet size parameters: D v10, D v50, D v90, relative span (RS), spray volume (%) in size fractions < 100 μm and 100÷200 μm. The sprays were also classified according to American Society of Agricultural Engineers (ASAE) standard S572.1 (ASAE 2009).
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (24)
1.
ASAE S572.1. 2009. Spray Nozzle Classification by Droplet Spectra.
 
2.
Czaczyk Z. 2012. Spray classification for selected flat fan nozzles. J. Plant Prot. Res. 52 (1): 180–183.
 
3.
Czaczyk Z. 2011a. Nierównomierność rozkładu poprzecznego cieczy i podatność wybranych rozpylaczy na zużycie. Technika Rolnicza Ogrodnicza Leśna 5: 16–18.
 
4.
Czaczyk Z. 2011b. Wstępne wyniki oceny jakości pracy rozpylaczy eżektorowych MMAT. Technika Rolnicza Ogrodnicza Leśna 6: 10–12.
 
5.
Czaczyk Z., Kleisinger S. 2002. Drift potential of boom-mounted antidrift nozzles measured in a wind tunnel. 10th IUPAC International Congress on the Chemistry of Crop Protection. Basel, August 4–9th. Vol. 1, p. 415.
 
6.
De Schampheleire M., Nuyttens D., Baetens K., Cornelis W., Gabriels D., Spanoghe P. 2009. Effects on pesticide spray drift of the physicochemical properties of the spray liquid. Precision Agric. 10 (5): 409–420.
 
7.
Giles D.K., Downey D., Squire L. 2005. Transient Droplet Size Spectra from Trigger Sprayers Dispensing Aqueous Solutions. Transactions of Am. Soc. Agric. Eng. (ASAE) 48 (1): 63–72.
 
8.
Guler H., Zhu H., Ozkan H.E., Derksen R.C., Yu Y., Krause C.R. 2007. Spray characteristics and drift reduction potential with air induction and conventional flat-fan nozzles. Transactions of the Am. Soc. Agric. Biol. Eng. (ASABE) 50 (3): 745–754.
 
9.
Hewitt A.J. 1997. The importance of droplet size in agricultural spraying. Atomization and Sprays 7 (3): 235–244.
 
10.
Hewitt A.J. 2001. Developments in international harmonization of pesticide drift management. Phytoparasitica 29 (2): 93–96.
 
11.
Hewitt A.J. 2008a. Droplet size spectra classification categories in aerial application scenarios. Crop Prot. 27 (9): 1284–1288.
 
12.
Hewitt A.J. 2008b. Spray optimization through application and liquid physical property variables-I. Environmentalist 28 (1): 25–30.
 
13.
ISO 10625. 2005. Equipment for Crop Protection. Sprayer Nozzles. Colour Coding for Identification. International Standardization Organization, 12 pp.
 
14.
JKI 2012. The list of certified nozzles at Julius Kühn Institute in Braunschweig:http://www.jki.bund.de/fileadm.... Access: January 2012.
 
15.
Lund I. 2000. Nozzles for drift reduction. Aspects Appl. Biol. 57: 97–102.
 
16.
Matthews G.A. 2000. Pesticide Applications Methods. 3rd. ed. Blackwell Science, Oxford, England, 432 pp.
 
17.
Miller P.C.H., Tuck C.R. 2005. Factors influencing the performance of spray delivery systems: A Review of recent developments. J. Am. Soc. Testing Materials 2 (6), 13 pp.
 
18.
Nuyttens D., Baetens K., De Schampheleire M., Sonck B. 2007a. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems Eng. 97 (3): 333–345.
 
19.
Nuyttens D., De Schampheleire M., Baetens K., Sonck B. 2007b. The influence of operator-controlled variables on spray drift from field crop sprayers. Transaction of the ASABE 50 (4): 1129–1140.
 
20.
Pruszyński S., Wolny S. 2009. Przewodnik Dobrej Praktyki Ochrony Roślin. Inst. Ochr. Roślin – Państwowy Inst. Badawczy, Poznań, 90 pp.
 
21.
Southcombe E.S.E., Miller P.C.H., Ganzelmeier H., van de Zande J.C., Miralles A., Hewitt A.J. 1997. The international (BCPC) spray classification system including a drift potential factor. p. 371-380. In: Proc. BCPC Crop Protection Conference Weeds. Brighton, UK, 17–20 November 1997, 1202 pp.
 
22.
Spillman J.J. 1984. Spray impaction, retention and adhesion: an introduction to basic characteristics. Pestic. Sci. 15 (2): 97–106.
 
23.
Teske M.E., Hewitt A.J., Valcore D.L. 2003. Drift and nozzle classification issues with ASAE standards S572 Aug99 Boundaries. Paper Number: AA03-001, written for presentation at the 2003 ASAE/NAAA Technical Session sponsored by ASAE Technical Committee PM23/6/2. 37th Annual National Agricultural Aviation Association Convention Silver Legacy Hotel and Casino, Reno, NV, December 8, 9 pp.
 
24.
Womac A.R., Maynard II R.A., Kirk I.W. 1999. Measurement variations in reference sprays for nozzle classification, Transaction of the ASAE 42 (3): 609–616.
 
eISSN:1899-007X
ISSN:1427-4345