ORIGINAL ARTICLE
Effect of plant hormones on the cambial activity of Cerasus vulgaris Miller under stress conditions with Zn
Kemal Yuce 1, B-F  
,  
 
 
More details
Hide details
1
Medicine Faculty, Basic Medicine Sciences, Physiology, Selcuk Unversity, Turkey
2
Faculty of Science, Department of Biology, Yuzuncu Yil University, Turkey
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Kemal Yuce   

Medicine Faculty, Basic Medicine Sciences, Physiology, Selcuk Unversity, Turkey
Online publish date: 2019-10-09
Submission date: 2019-01-29
Acceptance date: 2019-08-20
 
Journal of Plant Protection Research 2019;59(3):304–323
KEYWORDS
TOPICS
ABSTRACT
In the present study, the effects of 10, 20, 30 ppm hormone mixtures (indole-3-acetic acid + gibberellic acid + kinetin) with 0.1, 0.3, 0.5 and 1 ppm zinc (Zn) concentrations alone and their mixtures on the cambial activity of sour cherry (Cerasus vulgaris Miller) cuttings were investigated. Morphological and anatomical developments of the plants were observed. The leaves of the plants treated with zinc were found to be greener than the control. Plants treated with zinc faded earlier than the control. The cambial zone thickness, the cambial zone cell line, the radial and tangential lengths of the cambial zone cells decreased with increasing concentrations of zinc and increased with increasing concentrations of hormones. The radial and tangential wall widths of the cambial zone cells increased with increasing zinc concentrations and decreased with increasing hormone concentrations. As a result, in the 0.1, 0.3, 0.5 and 1 ppm Zn concentrations, the cambial zone thickness decreased by 10, 28, 50 and 65%, respectively, compared to the control. Thirty ppm hormone mixture – H.M. (indole-3-acetic acid + gibberellic acid + kinetin) increased the cambial zone thickness by 65, 15, 5% in 0.1, 0.3 and 0.5 Zn, respectively, compared to the control. It was found that plant hormones importantly improved the harmful effects of zinc on the cambial activity of the plant cuttings.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (43)
1.
Aydemir O., İnce F. 1988. Bitki besleme. Dicle Üniversitesi Eğitim Fakültesi Yayınları., Turkey: 559–572.
 
2.
Bashir K., Ishimaru Y., Nishizawa N.K. 2012. Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil 361 (1–2): 189–201. DOI: https://doi.org/10.1007/s11104....
 
3.
Binder H., Arnold K., Ulrich A.S., Zschörnig O. 2001. Interaction of Zn2+ with phospholipid membranes. Biophysical Chemistry 90 (1): 57–74. DOI: https://doi.org/10.1016/s0301-....
 
4.
Borboa L., Torre C.D.L. 1996. The genotoxicity of Zn(II) and Cd(II) in Allium cepa root meristematic cells. New Phytologist 134 (3): 481–486. DOI: https://doi.org/10.1111/j.1469....
 
5.
Broadley M., Brown P., Cakmak I., Rengel Z., Zhao F. 2012. Function of nutrients: Micronutrients A2 -Marschner, Petra. p. 191–248. In: “Marschner’s Mineral Nutrition of Higher Plants”. 3rd ed. Academic Press, San Diego, USA.
 
6.
Cakmak I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. The New Phytologist 146 (2): 185–205. DOI: https://doi.org/10.1046/j.1469....
 
7.
Chang H.-B., Lin C.-W., Huang H.-J. 2005. Zinc-induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regulation 46 (3): 261–266. DOI: https://doi.org/10.1007/s10725....
 
8.
Chaudhry N.Y., Khan A.S. 2000. Effect of growth hormones i.e., GA3, IAA and kinetin on 1. length and diameter of shoot, 2. early initiation of cambium and maturation of metaxylem elements in Cicer arietinum L. Pakistan Journal of Biological Sciences 3 (8): 1263–1266. DOI: https://doi.org/10.3923/pjbs.2....
 
9.
Chen H.-M., Han J.-J., Cui K.-M., He X.-Q. 2010. Modification of cambial cell wall architecture during cambium periodicity in Populus tomentosa Carr. Trees 24 (3): 533–540. DOI: https://doi.org/10.1007/s00468....
 
10.
Cosgrove D.J. 1997. Relaxation in a high-stress environment: The molecular bases of extensible cell walls and cell enlargement. The Plant Cell 9 (7): 1031–1041. DOI: https://doi.org/10.1105/tpc.9.....
 
11.
Cosgrove D.J. 2001. Wall structure and wall loosening. A look backwards and forwards. Plant Physiology 125 (1): 131–134. DOI: https://doi.org10.1104/pp.125.....
 
12.
Davies M.S., Francis D., Thomas J.D. 1991. Rapidity of cellular changes induced by zinc in a zinc tolerant and non-tolerant cultivar of Festuca rubra L. New Phytologist 117 (1): 103–108. DOI: https://doi.org/10.1111/j.1469....
 
13.
Davis J.G., Parker M.B. 1993. Zinc toxicity symptom development and partitioning of biomass and zinc in peanut plants. Journal of Plant Nutrition 16 (12): 2353–2369. DOI: https://doi.org/10.1080/019041....
 
14.
Deef H.E.S. 2008. Effect of cadmium and zinc on growth parameters of tomato seedlings. Academic Journal of Plant Sciences 1 (1): 5–11.
 
15.
Fatima T., Chaudry N.Y. 2004. Morphogenetic effect of growth hormones i.e., indole-3-acetic acid, gibberellic acid and heavy metal i.e., lead nitrate on the external and internal morphology of seedlings of Cicer arietinum L. Pakistan Journal of Biological Sciences 7 (8): 1443–1452. DOI: https://doi.org/10.3923/pjbs.2....
 
16.
Funada R., Kubo T., Sugiyama T., Fushitani M. 2002. Changes in levels of endogenous plant hormones in cambial regions of stems of Larix kaempferi at the onset of cambial activity in springtime. Journal of Wood Science 48 (1): 75. DOI: https://doi.org/10.1007/bf0076....
 
17.
Haktanır K., Arcak S. 1998. Çevre kirliliği. 1 st ed. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara, Turkey, 447 pp.
 
18.
Jain R., Srivastava S., Solomon S., Shrivastava A. K., Chandra A. 2010. Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiologiae Plantarum 32 (5): 979–986. DOI: https://doi.org/10.1007/s11738....
 
19.
Kende H., Zeevaart J.A.D. 1997. The five “classical” plant hormones. The Plant Cell 9 (7): 1197–1210. DOI: https://doi.org/10.1105/tpc.9.....
 
20.
Khan S.U., Gurmani A.R., Din J.-U., Qayyum A., Abbasi K.S., Liaquat M., Ahmad Z. 2015. Exogenously applied gibberellic acid, indole acetic acid and Kinetin as potential regulators of source-sink relationship, physiological and yield attributes in rice (Oryza sativa) genotypes under water deficit conditions. International Journal of Agriculture and Biology 18 (1): 139–145. DOI: https://doi.org/10.17957/ijab/....
 
21.
Li Y., Zhang Y., Shi D., Liu X., Qin J., Ge Q., Xu L., Pan X., Li W., Zhu Y., Xu J. 2013. Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor. New Phytologist 200 (4): 1102–1115. DOI: https://doi.org/10.1111/nph.12....
 
22.
Martha E.W. 1983. The Merck Index – An Encyclopedia of Chemicals, Drugs and Biologicals. 10th ed. Merck & Co., Germany, 1463 pp.
 
23.
Osborne D.J. 1962. Effect of Kinetin on protein & nucleic acid metabolism in Xanthium leaves during senescence. Plant Physiology 37 (5): 595–602. DOI: https://doi.org/10.1104/pp.37.....
 
24.
Park C., Yeo H., Park Y., Morgan A., Valan Arasu M., Al-Dhabi N., Park S. 2017. Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum Moench) sprouts. Molecules 22 (3): 374. DOI: https://doi.org/10.3390/molecu....
 
25.
Powell M.J., Davies M.S., Francis D. 1986a. Effects of zinc on cell, nuclear and nucleolar size, and on RNA and protein content in the root meristem of a zinc-tolerant and a nontolerant cultivar of Festuca rubra L. The New Phytologist 104 (4): 671–679. DOI: https://doi.org/10.1111/j.1469....
 
26.
Powell M.J., Davies M.S., Francis D. 1986b. The influence of zinc on the cell cycle in the root meristem of a zinc-tolerant and a non-tolerant cultivar of Festuca rubra L. New Phytologist 102 (3): 419–428. DOI: https://doi.org/10.1111/j.1469....
 
27.
Rehman H., Aziz T., Farooq M., Wakeel A., Rengel Z. 2012. Zinc nutrition in rice production systems: a review. Plant and Soil 361 (1–2): 203–226. DOI: https://doi.org/10.1007/s11104....
 
28.
Robards A.W., Davidson E., Kidwai P. 1969. Short-term effect of some chemicals on cambial activity. Journal of Experimental Botany 20 (4): 912–920. DOI: https://doi.org/10.1093/jxb/20....
 
29.
Sachs R.M., Bretz C.F., Lang A. 1959. Shoot histogenesis: the early effects of gibberellin upon stem elongation in two rosette plants. American Journal of Botany 46 (5): 376–384. DOI: https://doi.org/10.1002/j.1537....
 
30.
Sadak M.S., Dawood M.G., Bakry B.A., El-Karamany M.F. 2013. Synergistic effect of indole acetic acid and Kinetin on performance, some biochemical constituents and yield of faba bean plant grown under newly reclaimed sandy soil. World Journal of Agricultural Sciences 9 (4): 335–344. DOI: 10.5829/idosi.wjas.2013.9.4.1759.
 
31.
Singh M., John S.A., Rout S., Patra S.S. 2015. Effect of GA3 and NAA on growth and quality of garden pea (Pisum sativum L.) cv. arkel. The Bioscan 10 (3): 381–383.
 
32.
Sosnowski J. 2018. Morpho-physiological and biochemical effects of plant growth regulators on Medicago x varia T. Martyn. Applied Ecology and Environmental Research 16 (3): 2403–2414. DOI: https://doi.org/10.15666/aeer/....
 
33.
Sosnowski J., Malinowska E., Jankowski K., Król J., Redzik P. 2019. An estimation of the effects of synthetic auxin and cytokinin and the time of their application on some morphological and physiological characteristics of Medicago x varia T. Martyn. Saudi Journal of Biological Sciences 26 (1): 66–73. DOI: https://doi.org/10.1016/j.sjbs....
 
34.
Suzuki S. 1981. Effect of plant growth regulators applied by an injection method on the thickening growth of radishes. Sci. Rept. Agr. Meijo Univ., 17: 33–39.
 
35.
Swarnakar A. 2017. Enhancement effect of gibberellic acid and Kinetin on sucrose metabolism in mungbean seedlings under arsenate toxicity. American Journal of Bioscience and Bioengineering 5 (1): 50. DOI: https://doi.org/10.11648/j.bio....
 
36.
Tileklioğlu B., Algan G. 1992. Coleus sp. bitkisinde GA3 + IAA + K karışımlarının kambiyal aktiviteye etkisi. Yüzüncü Yıl Üniversitesi Ziraat Fakültesi Dergisi 2 (2): 169–175.
 
37.
Uggla C., Mellerovicz E.J., Sunberg B. 1998. İndole-3-acetic acid controls cambial growth in Scots pine by possitional signaling. Plant Physiology 117 (1): 113–121. DOI: https://doi.org/10.1104/pp.117....
 
38.
Venkatesan S., Hemalatha K.V., Jayaganesh S. 2006. Zinc toxicity and its influence on nutrient uptake in tea. American Journal of Plant Physiology 1 (2): 185–192. DOI: https://doi.org/10.3923/ajpp.2....
 
39.
Wang Q., Little C.H.A., Oden P.C. 1997. Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris. Tree Physiology 17 (11): 715–721. DOI: https://doi.org/10.1093/treeph....
 
40.
Williams M.E. 2015. Why study plants? The Plant Cell 21 (10): tpc.109.tt1009. DOI: https://doi.org/10.1105/tpc.10....
 
41.
Xu J., Xuan W., Huang B., Zhou Y., Ling T., Xu S., Shen W. 2006. Carbon monoxide-induced adventitious rooting of hypocotyl cuttings from mung bean seedling. Chinese Science Bulletin 51 (6): 668–674. DOI: https://doi.org/10.1007/s11434....
 
42.
Yang T., Davies P.J., Reid J.B. 1996. Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-crown peas. Plant Physiology 110 (3): 1029–1034. DOI: https://doi.org/10.1104/pp.110....
 
43.
Zakrzewski J. 1983. Hormonal control of cambial activity and vessel differentiation in Quercus robur. Physiologia Plantarum 57 (4): 537–542. DOI: https://doi.org/10.1111/j.1399....
 
eISSN:1899-007X
ISSN:1427-4345