• The fall armyworm attacks maize at all stages of development, resulting in economic yield losses.
  • Plants, by nature, have a plethora of adaptive features that allow them to cope with and survive herbivorous insect attacks.
  • However, crop genotypes differ in their ability to cope with and survive herbivorous insect feeding.
  • These adaptable plant characteristics could be investigated in order to confer resistance against insect plant damage.
Fall armyworm (Spodoptera frugiperda) (FAW) is an important invasive pest of maize. The young FAW larva disrupts the photosynthetic system by feeding on the leaves. The older caterpillar interferes with pollination and fertilization processes, destroying the tassel and silks, or it bores into the maize cob, reducing harvest quality and predisposing the cob to secondary infections. The infested plant responds by channeling or converting the primary metabolites into secondary metabolites for plant defense, further reducing crop yield. The devastating feeding effect on maize becomes even more severe when maize plants are exposed to prolonged drought, during which the production of secondary metabolites is optimum. These secondary metabolites are food for herbivorous insects like the fall armyworm. Naturally, plants possess several adaptive features which enable them to cope and survive herbivorous insect attacks without compensating yield for plant defense. Such features include: thickening of the leaf cuticle of the epidermal cell walls, production of certain allelochemicals, defense proteins and the toxic chemical compound, favone glycoside (silk maysin). This review attempts to critically appraise the physiological implications of fall armyworm damage on developmental processes and maize yield. Understanding the mechanisms of various adaptive traits that confer resistance to maize against herbivorous insect damage would assist greatly in crop improvement processes.
Magdalena Karbowska-Dzięgielewska
The authors have declared that no conflict of interests exist.
Abbott K.C. 2012. The dynamical effects of interactions between inducible plant resistance and food limitation during outbreaks. p. 30–46. In: “Insect Outbreak Revisited” (P. Barbosa, D.K. Letourneau, A.A. Agrawal, eds.). Wiley Blackwell, London, UK. DOI:
Abrahams P., Bateman M., Beale T., Clottey V., Cock M., Colmenarez Y., Corniani N., Day R., Early R., Godwin J., Gomez J., Moreno P.G., Murphy S.T., Oppong-Mensah B., Phiri N., Pratt C., Richards G., Silvestri S., Witt A. 2017. Fall Armyworm: Impacts and Implications for Africa. 4th ed. CABI, Wallingford, UK, 144 pp.
Akinbode O.A., Ogunniyan D.J., Olasoji J.O., Ajijola S., Anjorin F.B., Olakojo S.A., Afolabi C.G., Omodele T. 2014. Survey of resurgence of maize disease in South Western and Kwara state of Nigeria. International Journal of Agriculture and Forestry 4 (3): 451–458. DOI: 10.5923/j.ijaf.20140406.06.
Alborn H.T., Hansen T.V., Jones T.H., Bennett D.C., Tumlinson J.H., Schmelz E.A., Teal P.E. 2007. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proceeding of National Academy of Science USA 104 (32): 12976–12981. DOI:
Alborn H.T., Jones T.H., Stenhagen G.S., Tumlinson J.H. 2000. Identification and synthesis of volicitin and related components from beet armyworm oral secretions. Journal of Chemical Ecology 26: 203–220. DOI:
Alborn H.T., Turlings T.C.J., Jones T.H., Stenhagen G., Loughrin J.H., Tumlinson J.H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276 (5314): 945–949. DOI: 10.1126/science.276.5314.945.
Altieri M.A., Nicholls C.I. 2004. Biodiversity and Pest Management in Agro Ecosystems. New York, Food Product Press, USA, 236 pp.
Anjorin F.B., Adejumo S.A., Agboola L., Samuel T.D. 2016. Proline soluble sugar, leaf starch and relative water contents of four maize varieties in response to different watering regimes. Cercetări Agronomice în Moldova 49 (3): 51–62. DOI: 10.1515/cerce-2016-0025.
Awmack C.S., Leather S.R. 2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47: 817–844. DOI:
Barbour M.M., Farquhar G.D. 2003. Do pathways of water movement and leaf anatomical dimensions allow development of gradients in H2 18O between veins and the sites of evaporation within leaves? Plant, Cell and Environment 27 (1): 107–121. DOI:
Bede J.C., Mcneil J.N., Tobe S.S. 2007. The role of neuropeptides in caterpillar nutritional ecology. Peptides 28 (1): 185–196. DOI: 10.1016/j.peptides.2006.08.030.
Behmer S.T., Joern A. 2012. Insect herbivore outbreaks viewed through a physiological framework: insights from Orthoptera. p. 3–29. In: “Insect Outbreaks Revisited” (P. Barbosa, D.K. Letourneau, A. Agrawal, eds.). Blackwell Publishing Ltd, Sussex, UK.
Bell J. 2017. Corn growth stages and development. Available on: [Accessed: 7 August 2019].
Bi J.L., Felton G.W. 1995. Foliar oxidative stress and insect herbivory: primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. Journal of Chemical Ecology 21: (10) 1511–1529. DOI: 10.1007/BF02035149.
Bown A.W., Hall D.E., MacGregor K.B. 2002. Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiology 129 (4): 1430–1434. DOI: 10.1104/pp.006114.
Bruce T.J.A. 2015. Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. Journal of Experimental Botany 66 (2): 455–465. DOI:
Buntin G.D., Gilbertz D.A., Oetting R.D. 1993. Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology 86 (2): 517–522. DOI: 10.1093/JEE/86.2.517.
Buntin G.D., Braman S.K., Gilbertz D.A., Phillips D.V. 1996. Chlorosis, photosynthesis, and transpiration of azalea leaves after azalea lace bug (Heteroptera: Tingidae) feeding injury. Journal of Economic Entomology 89 (4): 990–995. DOI:
Canny M.J. 1990. Tansley Review, 22: What becomes of the transpiration stream? New Phytologist 114 (3): 341–368. DOI:
Chen Y., Ruberson J.R., Olson D.M. 2008. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomologia Experimentalis et Applicata 126 (3): 244–255. DOI:
Cortina C., Culiáñez-Macià F.A. 2005. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Science 169 (1): 75–82. DOI:
Cudmore T.J., Bjorklund N., Carroll A.L., Lindgren B.S. 2010. Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. Journal of Applied Ecology 47 (5): 1036–1043. DOI:
Dale A.G., Frank S.D. 2017. Warming and drought combine to increase pest insect fitness on urban trees. PLoS ONE 12 (3): DOI:
Darby H., Lauer J. 2000. Plant physiology, critical stages in the life of a corn plant. Available on: [Accessed: 5 September 2020].
Degenhardt J. 2009. Indirect defence responses to herbivory in grasses. Plant Physiology 149 (1): 96–102. DOI:
Deutsch C.A., Tewksbury J.J., Tigchelaar M., Battisti D.S., Merrill S.C., Huey R.B., Naylor R. 2018. Increase in crop losses to insect pests in a warming climate. Science 361 (6405): 916–919. DOI: 10.1126/science.aat3466.
Dicke M., Van Loon J.J.A., Soler R. 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology 5 (5): 317–324. DOI:
Dillon M.E., Wang G., Huey R.B. 2010. Global metabolic impacts of recent climate warming. Nature 467 (7316): 704–706. DOI:
Early R., González-Moreno P., Murphy S.T., Day R. 2018. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40: 25–50. DOI:
Fajemisin J.M. 1985. Maize diseases in Africa and their role in varietal improvement process. In: Proceedings of the 1st Eastern, Central and Southern African Regional maize workshop. March 7–10, Lusaka, Kenya. Available on: 1 November 2021].
Fajemisin J.M., Kim S.K., Efron Y., Alam M.S. 1984. Breeding for durable disease resistance in tropical maize with special reference to maize streak virus. FAO Plant Production. Protection Paper 55: 49–71. Available on: [Accessed: 03 February 2021].
Falk B.W., Tsai J.H. 1998. Biology and molecular biology of viruses in the genus Tenuivirus. Annual Review of Phytopathology 36 (1): 139–163. DOI:
FAO. 2015. FAOSTAT. Available on: [Accessed: 04 January 2020].
FAO. 2018. Integrated Management of the Fall Armyworm on Maize: A Guide for Farmer Field Schools in Africa. Food and Agriculture Organization of the United Nations Rome, 119 pp. Available on: https://assets.accessagricultu... [Accessed: 23 April 2019].
Fox L.R., Letourneau D.K., Eisenbach J., Nouhuys S.V. 1990. Parasitism rates and sex ratios of a parasitoid wasp: effects of herbivore and plant quality. Oecologia 83 (3): 414–419. DOI: 10.1007/BF00317569.
Frost C.J., Mescher M.C., Carlson J.E., De Moraes C.M. 2008. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiology 146 (3): 818–824. DOI: 10.1104/pp.107.113027.
Fry S.C. 1989. Analysis of cross-links in the growing cell walls of higher plants. p. 12–36. In: “Plant Fibers” (H.F. Linskens, J.F. Jackson, eds.). Springer-Verlag, New York, USA.
Fürstenberg-Hägg J., Zagrobelny M., Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Science 14 (5): 10242–10297. DOI: 10.3390/ijms140510242.
Garcia A.G., Godoy W.A.C., Thomas J.M.G., Nagoshi R.N., Meagher R.L. 2017. Delimiting strategic zones for the development of fall armyworm (Lepidoptera: Noctuidae) on corn in the State of Florida. Journal of Economic Entomology 20 (10): 1–7. DOI: 10.1093/jee/tox329.
Goergen G., Kumar P.L., Sankung S.B., Togola A., Tamò M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11 (10): e0165632. DOI:
Golan K., Rubinowska K., Kmieć K., Kot I., Górska-Drabik E., Łagowska B., Michałek W. 2015. Impact of scale insect infestation on the content of photosynthetic pigments and chlorophyll fluorescence in two host plant species. Arthropod – Plant Interactions 9: 55–65. DOI:
Goławska S., Krzyżanowski R., Łukasik I. 2010. Relationship between infestation and chlorophyll content in Fabaceae species. Acta Biologica Cracoviensia Series Botanica 52: 76–80. DOI: 10.2478/V10182-010-0026-4.
Gomez S., Steinbrenner A.D., Osorio S., Schueller M., Ferrieri R.A., Fernie A.R., Orians C.M. 2012. From shoots to roots: transport and metabolic changes in tomato after simulated feeding by a specialist Lepidopteran. Entomologia Experimentalis et Applicata 144 (1): 101–111. DOI:
Grant P. 2020. Maize production: Managing critical plant growth stages. Farmer’s Weekly Magazine/Caxton Magazines Digital Available on: [Accessed: 12 January 2020].
Hartley R.D., Jones E.C. 1978. Phenolic components and degradability of the cell walls of the brown midrib mutant, bm3, of Zea mays. Journal of the Science of Food and Agriculture 29: 777–789. DOI:
Hedin P.A., Davis F.M., Williams W.P., Hicks R.P., Fisher T.H. 1996. Hemicellulose is an important leaf-feeding resistance factor in corn to the fall armyworm. Journal of Chemical Ecology 22 (9): 1655–1668. DOI: 10.1007/BF02272405.
Heldt H.W., Piechulla B. 2011. Plant Biochemistry. 4th ed., Academic Press, USA, 656 pp.
Heng-Moss T.M., Ni X., Macedo T., Markwell J.P., Baxendale F.P., Quisenberry S.S., Tolmay V. 2003. Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae) – infested wheat isolines. Journal of Economic Entomology 96 (2): 475–481. DOI: 10.1093/jee/96.2.475.
Hilker M., Meiners T. 2006. Early herbivore alert: insect eggs induce plant defense. Journal of Chemical Ecology 32 (7): 1379–1397. DOI: 10.1007/s10886-006-9057-4.
Ho L.C. 1988. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Annual Review of Plant Physiology and Plant Molecular Biology 39 (1): 355–378. DOI:
Hodge S., Ward J.L., Beale M.H., Bennett M., Mansfield J.W., Powell G. 2013. Aphid-induced accumulation of trehalose in Arabidopsis thaliana is systemic and dependent upon aphid density. Planta 237 (4): 1057–1064. DOI: 10.1007/s00425-012-1826-4.
Holland J.N., Cheng W.X., Crossley D.A. 1996. Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14. Oecologia 107 (1): 87–94. DOI:
Huberty A.E., Denno R.E. 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85 (5): 1383–1398. DOI:
Hummel I., Pantin F., Sulpice R., Pique M., Rolland G., Dauzat M., Christophe A., Pervent M., Bouteillé M., Stitt M., Gibon Y., Muller B. 2010. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiology 154 (1): 357–372. DOI: 10.1104/pp.110.157008.
Irlich U.M., Terblanche J.S., Blackburn T.M., Chown S.L. 2009. Insect rate-temperature relationships: environmental variation and the metabolic theory of ecology. The America Naturalist 174 (6): 819–835. DOI: 10.1086/647904.
Karban R., Myers J.H. 1989. Induced plant responses to herbivory. Annual Review of Ecology and Systematics 20 (1): 331–348. DOI:
Kessler A., Baldwin I.T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144. DOI: 10.1126/science. 291.5511.2141.
Kiran B., Sood A.K., Pathania V.S., Thakur S. 2018. Effect of plant nutrition in insect pest management: a review. Journal of Pharmacognosy and Phytochemistry 7 (4): 2737–2742.
Kost C., Heil M. 2006. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. Journal of Ecology 94 (3): 619–628. DOI:
Landis D.A., Wratten S.D., Gurr G.M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45: 175–201. DOI:
Lee B., Lee S., Ryu C.M. 2012. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and nonpathogenic bacteria in pepper. Annals of Botany 110 (2): 281–29. DOI:
Leon J., Rojo E., Sanchez-Serrano J.J. 2001. Wound signaling in plants. Journal of Experimental Botany 52 (354): 1–9. DOI:
Letourneau D.K. 1998. Conservation biology: lessons for conserving natural enemies. p. 9–38. In: “Conservation Biological Control” (P. Barbosa, ed.). Academic Press, USA.
Lewter J.A., Szalanski A.L., Nagoshi R.N., Meagher R.L, Jr Owens C.B., Luttrell R.G. 2006. Genetic variation within and between strains of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist 89 (1): 63–68. DOI:
Logan J., Regniere J., Powell J.A. 2003. Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment 1 (3): 130–137. DOI:
Lopez L., Camas A., Shivaji R., Ankala A., Williams P., Luthe D. 2007. Mir1-CP, a novel defense cysteine protease accumulates in maize vascular tissues in response to herbivory. Planta 226 (2): 517–527. DOI:
Lu Y.J., Adang M.J. 1996. Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker. Florida Entomologist 79 (1): 48–55. DOI: 10.2307/3495753.
Mao L.Z., Lu H.F., Wang Q., Cai M.M. 2007. Comparative photosynthesis characteristics of Calycanthus chinensis and Chimonanthus praecox. Photosynthetica 45: 601–605. DOI:
Mihm J.A. 1994. Maize pest management – multiple insect and disease resistant varieties are the key to success. p. 176–181. In: “Maize Research for Stress Environments” (D.C. Jewell, S.R. Waddington, J.K. Ransom, K.V. Pixley, eds.). Proceedings of the Fourth Eastern and Southern Africa Regional Maize Conference. Harare, Zimbabwe, 28 March–1 April, 1994. Available on: [Accessed: 12 January 2021].
Millard P., Grelet G.A 2010. Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiology 30 (9): 1083–1095. DOI:
Morrison I.M. 1979. Carbohydrate chemistry and rumen digestion. Proceeding of Nutrition Society 38 (3): 259–274. DOI:
Nagoshi R.N., Murúa M.G., Hay-Roe M., Juárez M.L., Willink E., Meagher R.L. 2012. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina. Journal of Economic Entomology 105 (2): 418–428. DOI: 10.1603/EC11332.
Nagoshi R.N., Silvie P., Meagher R.L., Lopez J., Machado V. 2007. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Annals of the Entomological Society of America 100 (3): 394–402. DOI: 10.1603/0013-8746.
Nazarov P.A., Baleev D.N., Ivanova M.I., Sokolova L.M., Karakozova M.V. 2020. Infectious plant diseases: etiology, current status, problems and prospects in plant protection. Acta Naturae 12 (3): 46–59. DOI: 10.32607/actanaturae.11026.
Ngetich F.K., Shisanya C.A., Mugwe J., Mucheru-Muna M., Mugendi D. 2012. The Potential of Organic and Inorganic Nutrient Sources in Sub-Saharan African Crop Farming Systems – A Global Perspective. InTechOpen. Available on: [Accessed: 12 August 2016].
Ni X., Da K., Buntin G.D., Brown S.L. 2008. Fall armyworm resistance in maize physiological basis of fall armyworm (Lepidoptera: Noctuidae) resistance in seedlings of maize inbred lines with varying levels of silk maysin. Florida Entomologist 91 (4): 537–545. DOI:
Ni X., Quisenberry S.S., Markwell J., Heng-moss T., Higley L., Baxendale F., Sarath G., Klucas R. 2001. In vitro enzymatic chlorophyll catabolism in wheat elicited by cereal aphid feeding. Entomologia Experimentalis et Applicata 101 (2): 159–166. DOI:
Ni X., Quisenberry S.S., Heng-Moss T., Markwell J., Higley L., Baxendale F., Sarath G., Klucas R. 2002. Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Entomologia Experimentalis et Applicata 105 (1): 43–53. DOI:
Nielson R.L. 2018. Kernel Set Scuttlebutt. Corny News Network, Purdue University. Available on: [Accessed: 10 April 2019].
Nykänen H., Koricheva J. 2004. Damage-induced changes in woody plants and their effects on insect herbivore performance, a meta-analysis. Oikos 104 (2): 247–268. DOI:
Ort D.R., Baker N.R. 2002. A photoprotective role for O2 as an alternative electron sink in photosynthesis? Current Opinion in Plant Biology 5 (3): 193–198. DOI: 10.1016/s1369-5266(02)00259-5.
Ostlie K., Pedigo L. 1984. Water loss from soybeans after simulated and actual insect defoliation. Environmental Entomology 13 (6): 1675–1680. DOI:
Pechan T., Ye L., Chang Y., Mitra A., Lin L., Davis F.M., Williams W.P., Luthe D.S. 2000. A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell 12 (7): 1031–1040. DOI:
Petersen C., Woods H.A., Kingsolver J.G., Petersen C., Woods H.A., Kingsolver J.G. 2000. Stage-specific effects of temperature and dietary protein on growth and survival of Manduca sexta caterpillars. Physiological Entomology 25 (1): 35–40. DOI: 10.1046/j.1365-3032.2000.00163.
Prasanna B.M., Huesing J.E., Eddy R., Peschke V.M. 2018. Fall Armyworm in Africa: A Guide for Integrated Pest Management. 1st ed. CIMMYT, Mexico, 120 pp. Available on: [Accessed: 12 January 2021].
Prudic K.L., Oliver J.C., Bowers M.D. 2005. Soil nutrient effects on oviposition preference, larval performance and chemical defense of a specialist insect herbivore. Oecologia 143 (4): 578–587. DOI:
Ramirez B.C. 2008. Tenuivirus. p. 24–27. In: “The Encyclopedia of Virology” (B.W.J. Mahy, M.H.V. van Regenmortel, eds.). Elsevier Academic Press, UK.
Rwomushana I., Bateman M., Beale T., Beseh P., Cameron K., Chiluba M., Clottey V., Davis T., Day R., Early R., Godwin J., Gonzalez Moreno P., Kansiime M., Kenis M., Makale F., Mugambi I., Murphy S., Nunda W., Phiri N., Pratt C., Tambo J. 2018. Fall armyworm: impacts and implication for Africa. Evidence Note Update. Available on: CABI International [Accessed: 13 March 2020].
Satoh-Nagasawa N., Nagasawa N., Malcomber S., Sakai H., Jackson D. 2006. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441: 227–230. DOI:
Schenk P.M., Kazan K., Wilson I., Anderson J.P., Richmond T., Somerville S.C., Manners J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the USA (97): 11655–11660. DOI:
Showler A.T. 2013. Water deficit stress-host plant nutrient accumulations and associations with phytophagous arthropods. In: “Abiotic Stress-Plant Responses and Applications in Agriculture” (K. Vahdati, C. Leslie, eds.). InTechOpen Available on:] [Accessed: 24 January 2021].
Shrestha S. 2019. Effects of climate change in agricultural insect pest. Acta Scientific Agriculture (3): 74–80. DOI: https//
Sisay B., Simiyu J., Malusi P., Likhayo P., Mendesil E., Elibariki N., Wakgari M., Ayalew G., Tefera T. 2018. First report of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) natural enemies from Africa. Journal of Applied Entomology 142 (8): 800–804. DOI:
Snook M.E., Wiseman B.R., Widstrom N.W., Wilson R.L. 1994. Chemicals associated with maize resistance to corn earworm and fall armyworm. p. 37–45. In: “Insect Resistant Maize: Recent Advances and Utilization” (J.A. Mihm, ed.). International Maize and Wheat Improvement Center (CIMMYT), El Batan, Mexico.
Sosulski R., Krygier K., Hogge L. 1982. Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. Journal of Agriculture Food and Chemistry 30 (2): 337–340. DOI:
Tamiru A., Bruce T.J.A., Woodcock C.M., Caulfield J.C., Midega C.A.O., Ogol C.K.P.O., Mayon P., Birkett M.A., Pickett J.A., Khan Z.R. 2011. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecological Letters 14 (11): 1075–1083. DOI:
Thordal-Christensen H., Zhang Z., Wei Y., Collinge D.B. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant Journal 11 (6): 1187–1194. DOI:
Tscharntke T., Klein A.M., Kruess A., Steffan-Dewenter I., Thies C. 2005. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters 8 (8): 857–874. DOI:
Tymowska-Lalanne Z., Kreis M. 1998 Expression of the Arabidopsis thaliana invertase gene family. Planta 207 (2): 259–265. DOI:
Waiss A., Jr. C., Chan B.G., Elliger C.A., Wiseman B.R., McMillian W.W., Widstrom N.W., Zuber M.S., Keaster A.J. 1979. Maysin, a flavone glycoside for corn silks with antibiotic activity toward corn earworm. Journal of Economic Entomology 72 (2): 256–258. DOI:
Welter S.C. 1989. Arthropod impact on plant gas exchange. p. 135–151. In: “Insect–Plant Interactions” (E.A. Bernays, ed.). CRC Press, USA.
White T.C.R. 2009. Plant vigour versus plant stress: a false dichotomy. Oikos 118 (6): 807–808. DOI:
Woods H.A. 1999. Patterns and mechanisms of growth of fifth-instar Manduca sexta caterpillars following exposure to low- or high-protein food during early instars. Physiological and Biochemical Zoology 72 (4): 445–454. DOI: 10.1086/316678.
Ximénez-Embún M.G., Castan era P., Ortego F. 2017. Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae. Journal of Insect Physiology 96: 73–81. DOI: 10.1016/j.jinsphys.2016.10.015.
Yanchuk A.D., Murphy J.C., Wallin K.F. 2008. Evaluation of genetic variation of attack and resistance in lodgepole pine in the early stages of a mountain pine beetle outbreak. Tree Genetics and Genomes 4 (2): 171–180. DOI:
Zabel J., Tscharntke T. 1998. Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially? Oecologia 116 (3): 419–425. DOI:
Zarco-Tejada P.J., Miller J.R., Mohammed G.H., Noland T.L., Sampson P.H. 2002. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. Journal of Environmental Quality 31 (5): 1433–1441. DOI:
Zhou S., Lou Y., Tzin V., Jander G. 2015. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiology 169 (3): 1488–1498. DOI: