ORIGINAL ARTICLE
Influence of industry pollution on the efficacy of common lambsquarters (Chenopodium album L.) control by pyridate
 
More details
Hide details
1
Institute of Plant Protection, Department of Ecology Miczurina 20, 60-318 Poznań, Poland
CORRESPONDING AUTHOR
Urszula Dopierała
Institute of Plant Protection, Department of Ecology Miczurina 20, 60-318 Poznań, Poland
 
Journal of Plant Protection Research 2006;46(4):409–416
KEYWORDS
TOPICS
ABSTRACT
In the vicinity of copper foundry “Głogów” agricultural farms exist for 35 years. The aim of the work was to determine if biotypes of common lambsquarters (Chenopodium album L.) growing for many years in heavy metals polluted environment showed any differences in the efficacy of herbicides’ control. Seeds of C. album were collected near Głogów, from four cultivated fields with different content of heavy metals in soil (mainly copper). From these seeds experimental plants were grown in greenhouse conditions. In greenhouse experiments the efficacy of control of C. album by different pyridate (6-chloro-3-phenylpyridazin-4-yl S-octyl thiocarbonate) doses also in combinations with 0.2% CuSO4 was compared. Also the efficacy of pyridate in control of C. album seedlings which were grown in pots with soils collected from the vicinity of smelter was tested. Additionally, in growth chamber, the effect of increasing copper concentration on shoot and root growth was analyzed. Pyridate showed similar efficacy on tested populations of C. album without respect of soil contamination level, seeds’ origin and presence of copper ions in spray solution in which herbicide was used in full dose. Statistical differences were observed when herbicide was applied at ⅓ pyridate full dose, especially in the presence of Cu2+ ions in spray solution.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (17)
1.
Babu T.S., Marder J.B., Tripuranthakam S., Dixon D.G., Greenberg B.M. 2001. Synergistic effects of a photooxidized policyclic aromatic hydrocarbon and copper on photosynthesis and plant growth: evidence that in vivo formation of reactive oxygen species is a mechanism of copper.toxicity. Environ. Toxicol. Chem. 20: 1351–1358.
 
2.
Brej T. 1983. Badania ekologiczne roślin w obszarze intensywnego oddziaływania emisji Huty Miedzi “Legnica”. Zesz. Nauk. AR Wroc. Serie 141: 23–44.
 
3.
Brej T. 1998. Heavy metal tolerance in Agropyron repens (L.) P. Bauv. population from the Legnica copper smelter area, Lower Silesia. Acta Soc. Bot. Pol. 67: 325–333.
 
4.
Dopierała U. 2005a. Porównanie skuteczności zwalczania szarłatu szorstkiego na glebach o różnym poziomie zanieczyszczenia metalami ciężkimi. Prog. Plant Protection/Post.Ochr. Roślin 45: 629–632.
 
5.
Dopierała U. 2005b. Chemical control of common lambsquarters Chenopodium album L. (Chenopodiaceae) originated from industry polluted areas. Ecol. Chem. Eng. 12: 1051–1056.
 
6.
Grzyś E., Sacała E., Demczuk A. 2004. Wrażliwość siewek kukurydzy na chlorsulfuron w warunkach niedoboru azotu u roślin. Prog. Plant Protection/Post.Ochr. Roślin 44: 721–723.
 
7.
Jasiewicz Cz., Zemanek M., Antoniewicz J. 2004. Wpływ miedzi na zawartość barwników fotosyntetycznych u kukurydzy uprawianej w kulturach wodnych. Zesz. Probl. Post. Nauk Rol. 496: 459–467.
 
8.
Masarovicova E., Holubova M. 1998. Effect of copper on growth and chlorophyll content of some herbs. Rost. Vyroba 44: 261–265.
 
9.
Rosada J. 1996. Przyczyny zanieczyszczenia roślin metalami ciężkimi – skażone powietrze czy gleba? Prog. Plant Protection/Post. Ochr. Roślin 36 (2): 351–353.
 
10.
Rosada J., Urbańczyk J. 2003. Ocena stopnia zanieczyszczenia gleb i roślin w rejonie Huty Miedzi “Głogów” w świetle nowych ustaw o dopuszczalnym poziomie metali ciężkich. p. 245–252. In “Kwas Siarkowy – Nowe Wyzwania” (P. Grzesiak, G. Schroeder, S. Pruszyński, ed.). Inst. Ochr. Roślin, 318 pp.
 
11.
Ruszkowska M., Wojcieska-Wyskupajtys U. 1996. Mikroelementy – Fizjologiczne aspekty ich niedoborów i nadmiarów. Zesz. Probl. Post. Nauk Rol. 434: 1–11.
 
12.
Sacała E., Demczuk A., Grzyś E. 1999. Fitotoksyczność herbicydu Roundup w warunkach zasolenia. Zesz. Probl. Post. Nauk Rol. 469: 489–495.
 
13.
Schat H., Vooijs R. 1997. Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a cosegregation analysis. New Phytol. 136: 489–496.
 
14.
Teisseire H., Couderchet M., Vernet G. 1999. Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor). Environ. Pollut. 106: 39–45.
 
15.
Teisseire H., Vernet G. 2000. Is the “Diuron effect“ due to herbicide strengthening of antioxidative defenses of Lemna minor? Pestic. Biochem. Physiol. 66: 153–160.
 
16.
Wilkins D.A. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 80: 623–633.
 
17.
Yruela I., Pueyo J. J., Alonso P. J., Picorel R. 1996. Photoinhibition of photosystem II from higher plants: Effect of copper inhibition. J. Biol. Chem. 271: 27408–27415.
 
eISSN:1899-007X
ISSN:1427-4345