ORIGINAL ARTICLE
Inhibition effect of selected inorganic metal ions on the mycelial growth of Cryphonectria parasitica
Katarina Adamcikova 1, A-D,F  
,   Zuzana Jánošíková 1, C,E,   Jozef Pažitný 1, C,E
 
More details
Hide details
1
Department of Plant Pathology and Mycology, Institute of Forest Ecology SAS, Slovak Republic
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Katarina Adamcikova   

Department of Plant Pathology and Mycology, Institute of Forest Ecology SAS, Akademická 2, 949 01, Nitra, Slovak Republic
Submission date: 2020-05-25
Acceptance date: 2020-09-03
Online publication date: 2020-11-10
 
Journal of Plant Protection Research 2020;60(4):399–405
 
KEYWORDS
TOPICS
ABSTRACT
In the current study the antifungal activity of inorganic reagents was tested against Cryphonectria parasitica in vitro in a mycelial growth inhibition test. Three reagents, each consisting of chloride silver (AgCl) in combination with (1) aluminum oxide − Al2O3, (2) zinc oxide − ZnO, and (3) Al2O3 and titanium dioxide – TiO2, were tested. Significant differences of the tested reagents on the growth of C. parasitica were recorded. The study demonstrated that silver in mixture with ZnO had an antifungal effect and significantly reduced the mycelial growth of C. parasitica in vitro. The mixture of AgCl with the other two combinations of inorganic metal oxides had no inhibition effect on the growth of the pathogen. It was confirmed that ZnO (applied in a single compound test) is responsible for inhibition of C. parasitica mycelium growth. A preliminary in planta assay was performed but statistically significant differences were not recorded in the average increment of canker length.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
FUNDING
This work was supported by the VEGA under Grant Number 2/0143/15 and reagents were supplied by Ansil, s.r.o., Nová Dubnica Slovakia.
 
REFERENCES (29)
1.
Adamčíková K., Ondrušková E., Kobza M. 2019. Hypovirulence in chestnut blight fungus, Cryphonectria parasitica, in Slovakia. Biocontrol Science and Technology 29 (9): 840–851. DOI: https://doi.org/10.1080/095831....
 
2.
Anagnostakis S.L. 1987. Chestnut blight – the classical problem of an introduced pathogen. Mycologia 79: 23–37.
 
3.
Baldrian P. 2010. Effect of heavy metals on saprotrophic soil fungi. p. 263–278. In „Soil Heavy Metals, Soil Biology“ (I. Sherameti, A. Varma, eds.). Springer-Verlag, Berlin Heidelberg, 492 pp.
 
4.
Biraghi A. 1946. Il cancro del castagno causato da Endothia parasitica. L’Italia Agricola 8: 406−411.
 
5.
Bolvanský M., Adamčíková K., Kobza M. 2014. Screening resistance to chestnut blight in young chestnut trees derived from Castanea sativa × Castanea crenata hybrids. Folia oecologica 41 (1): 1–7.
 
6.
Cortesi P., Rigling D., Heiniger U. 1998. Comparison of vegetative compatibility types in Italian and Swiss subpopulations of Cryphonectria parasitica. European Journal of Forest Pathology 28 (3): 167–176. DOI: https://doi.org/10.1111/j.1439....
 
7.
Du Y., Li P., Mulligan D., Huang L. 2014. Foliar zinc uptake processes and critical factors influencing foliar Zn efficacy. Biointerface Research in Applied Chemistry 4 (3): 754–766.
 
8.
Elliott K.J., Swank W.T. 2008. Long-term changes in forest composition and diversity following early logging (1919–1923) and the decline of American chestnut (Castanea dentata). Plant Ecology 197: 155–172.
 
9.
EPPO. 2005. Normes OEPP. EPPO Standards. Diagnostics. Cryphonectria parasitica. OEPP/EPPO, Bulletin OEPP/EPPO Bulletin 35: 271–273.
 
10.
Gelover S., Gómez L.A., Reyes K., Leal M.T. 2006. A practical demonstration of water disinfection using TiO2 films and sunlight Water Research 40 (17): 3274–3280. DOI:10.1016/j.watres.2006.07.006.
 
11.
Gopinath V., Velusamy P. 2013. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 106: 170–174. DOI: https://doi.org/10.1016/j.saa.....
 
12.
He L., Liu Y., Mustapha A., Lin M. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research 166 (3): 207–215. DOI: https://doi.org/10.1016/j.micr....
 
13.
Jo Y.K., Kim, B.H., Jung G. 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Diseases 93 (10): 1037–1043. DOI: 10.1094/PDIS-93-10--1037.
 
14.
Juhásová G., Adamčíková K., Robin C. 2005. Results of biological control of chestnut blight in Slovakia. Phytoprotection 86 (1): 19–23. DOI: 10.7202/011710ar.
 
15.
Krishnaraj C., Ramachandran R., Mohan K., Kalaichelvan P.T. 2012. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 93: 95–99. DOI: https://doi.org/10.1016/j.saa.....
 
16.
Kühn K.P., Cahberny I.F., Massholder K., Stickler M., Benz V.W., Sonntag H., Erdinger L. 2003. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53 (1): 71–77. DOI: 10.1016/S0045-6535(03)00362-X.
 
17.
Malachová K., Praus P., Rybková Z., Kozák O. 2011. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Applied Clay Science 53 (4): 642–645. DOI: 10.1016/j.clay.2011.05.016.
 
18.
Mukherjee A., Sadiq M.I., Prathna T.C., Chandrasekaran N. 2011. Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications. p. 245−251. In „Science Against Microbial Pathogens: Communicating Current Research and Technological Advances“ (A. Méndez-Vilas, ed.). Formatex Badajos, Spain, 1348 pp.
 
19.
Narayanan K.B., Park H.H. 2014. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. European Journal of Plant Pathology 140 (2): 185–192. DOI 10.1007/s10658-014-0399-4.
 
20.
Padmavathy N., Vijayaraghan R. 2008. Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Science and Technology of Advanced Materials 9 (3): 035004, DOI: 10.1088/1468-6996/9/3/035004.
 
21.
Pažitný J., Bolvanský M., Adamčíková K. 2018. Screening for resistance of progenies derived from Castanea sativa × C. crenata and C. crenata to Cryphonectria parasitica. Forest Pathology 48: 12439. DOI: https://doi.org/10.1111/efp.12....
 
22.
Pinto R.J.B., Almeida A., Fernandes S.C.M., Freire C.S.R., Silvestre A.J.D., Neto C.P., Trindade T. 2013. Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids and Surfaces B: Biointerfaces 103: 143–148. DOI: https://doi.org/10.1016/j.cols....
 
23.
Sadiq I.M., Pakrashi S., Chandrasekaran N., Mukherjee A. 2011. Studies on toxicity of Aluminium oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research 13 (8): 3287−3299. DOI: 10.1007/s11051-011-0243-0.
 
24.
Sadiq M.I., Chowdhury B., Chandrasekaran N., Mukherjee A. 2009. Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine: Nanotechnology Biology and Medicine 5 (3): 282–286. DOI: https://doi.org/10.1016/j.nano....
 
25.
Savi G.D., Bortoluzzi A.J., Scussel V.M. 2013. Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. International Journal of Food Science and Technology 48 (9): 1834–1840. DOI:10.1111/ijfs.12158.
 
26.
Sawai J., Yoshikawa T. 2004. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. Journal of Applied Microbiology 96 (4): 803–809. DOI: 10.1111/j.1365-2672.2004.02234.x.
 
27.
Sharma D., Rajput J., Kaith B.S., Kaur M., Sharma S. 2010. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519 (3): 1224–1229. Doi :10.1016/j.tsf.2010.08.073.
 
28.
Silva-Castro I., Martín-García J., Diez J.J., Flores-Pacheco J.A., Martín-Gil J., Martín-Ramos P. 2018. Potential control of forest diseases by solutions of chitosan oligomers, propolis and nanosilver. European Journal of Plant Pathology 150 (2): 401–411. DOI: 10.1007/s10658-017-1288-4.
 
29.
Simonetti N., Simonetti G., Bougnol F., Scalzo M. 1992. Electrochemical Ag+ for preservative use. Applied and Environmental Microbiology 58 (12): 3834−3836.
 
eISSN:1899-007X
ISSN:1427-4345