• Mechanisms of resistance in Conyza species
  • Control of weeds
  • Weed resistance
Reports of weed resistance to herbicides have increased in recent years and differentiation in resistance mechanisms is considered to be a concern for the future of weed science. The aim of this work was to characterize the mechanisms of resistance to herbicides associated with Conyza sp. complex and analyze their implications. Aspects of the action of herbicides commonly used in their control will be addressed, in addition to a description of the mechanisms involved in multiple resistance in Conyza species.
Kinga Matysiak
The authors have declared that no conflict of interests exist.
Adegas F.S., Gazziero D.L.P., Vargas L., Karam D., Silva A.F., Agostinetto D. 2017. Economic impact of herbicide resistant weed in Brazil. Circular Técnica, Embrapa Londrina. (in Portuguese).
Albrecht A.J.P., Thomazini G., Albrecht L.P., Pires A., Lorenzetti J.B., Danilussi M.T.Y., Silva A.F.M., Adegas F.S. 2020a. Conyza sumatrensis resistant to paraquat, glyphosate and chlorimuron: confirmation and monitoring the first case of multiple resistance in Paraguay. Agriculture 10: 582. DOI:
Albrecht A.J.P., Pereira V.G.C., Souza C.N.Z.D., Zobiole L.H.S., Albrecht L.P., Adegas F.S. 2020b. Multiple resistance of Conyza sumatrensis to three mechanisms of action of herbicides. Acta Scientiarum, Agronomy: 42. DOI:
Baccin L.C. 2020. Identification, leaf characterization and physiology of herbicide resistant Conyza spp. Master’s thesis. Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Portuguese. (in Portuguese).
Burgos N., Rouse C., Singh V., Salas-Perez R., Bagavathiannan M. 2017. Technological advances for weed management. p. 71–86. In: Commemorating 50 Years (1967–2017) 50th Anniversary Celebratory Volume, Asian-Pacific Weed Science Society (APWSS). Asian-Pacific Weed Science Society (APWSS) Publication.
Cardinali V.C.B., Dias A.C.R., Mueller T.C., Abercrombie L., Stewart Jr. C.N., Tornisielo V.L., Christoffoleti P.J. 2015. Shikimate accumulation, glyphosate absorption and translocation in horseweed biotypes. Planta Daninha 33: 109–118. DOI:
Cho M., Cho H. 2013. The function of ABCB transporters in auxin transport. Plant Signaling and Behavior 8 (2): 642–654. DOI:
Christoffoleti P.J., Victoria Filho R., Silva C.B.D. 1994. Herbicide resistance in weeds. Planta Daninha 12 (1): 13–20. DOI: (in Portuguese).
Darkó É., Váradi G., Dulai S., Lehoczki E. 1996. Atrazine-resistant biotypes of Conyza canadensis have altered fluorescence quenching and xanthophyll cycle pattern. Plant Physiology and Biochemistry (Paris) 34 (6): 843–852.
Dinelli G., Marotti I., Bonetti A., Catizone P., Urbano J.M., Barnes J. 2008. Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Research 48 (3): 257–265. DOI:
Duke S.O., Powles S.B. 2008. Glyphosate: a once-in-a century herbicide. Pest Management Science 64: 319–325. DOI:
Ferreira E.A., Galon L., Aspiazú I., Silva A.A., Concenço G., Silva A.F., Vargas L. 2008. Glyphosate translocation in hairy fleabane (Conyza bonariensis) biotypes. Planta Daninha 26 (3): 637–643. DOI:
Finkel T., Holbrook N.J. 2000. Oxidants, oxidative stress, and the biology of ageing. Nature 408 (6809): 239–247. DOI:
Foloni L.L. 2016. 2,4-D Herbicide: an Overview. Labcom Total, Ribeirão Preto, BR 252 pp. (in Portuguese).
Frankton C., Mulligan G.A. 1987. Weeds of Canada (revised). Toronto, NC, 217 pp.
Fuerst E.P., Nakatani H.Y., Dodge A.D., Penner D., Arntzen C.J. 1985. Paraquat resistance in Conyza. Plant Physiology 77 (4): 984–989. DOI:
Gage K.L., Krausz R.F., Walters S.A. 2019. Emerging challenges for weed management in herbicide-resistant crops. Agriculture 9 (8): 180. DOI:
Gaines T.A., Duke S.O., Morran S., Rigon C.A., Tranel P.J., Küpper A., Dayan F.E. 2020. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry 295 (30): 10307–10330. DOI:
Gawronski S.W., Sugita M., Sugiura M. 1992. Mutation of psbA gene in herbicide resistant population of Erigeron canadensis. p. 405–407. In: “Research in Photosynthesis III” (N. Murata, ed.). Academic Publishers, Dordrecht, Netherlands.
Ge X., D’Avignon D.A., Ackerman J.J., Sammons R.D. 2010. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Management Science 66: 345–348. DOI:
Ge X., D’Avignon D.A., Ackerman J.J., Sammons R.D. 2014. In vivo 31P-nuclear magnetic resonance studies of glyphosate uptake, vacuolar sequestration, and tonoplast pump activity in glyphosate-resistant horseweed. Plant Physiology 166: 1255–1268. DOI:
Giacomini D.A., Umphres A.M., Nie H., Mueller T.C., Steckel L.E., Young B.G., Tranel P.J. 2017. Two new PPX2 mutations associated with resistance to PPO-inhibiting herbicides in Amaranthus palmeri. Pest Management Science 73 (8): 1559–1563. DOI:
González-Torralva F., Gil-Humanes J., Barro F., Domínguez-Valenzuela J.A., De Prado R. 2014. First evidence for a target site mutation in the EPSPS2 gene in glyphosate-resistant Sumatran Fleabane from citrus orchards. Agronomy for Sustainable Development 34 (2): 553–560. DOI:
González-Torralva F., Rojano-Delgado A.M., Luque de Castro M.D., Mülleder N., De Prado R. 2012. Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. Journal of Plant Physiology 169 (17): 1673–1679. DOI:
Green J.M., Owen M.D. 2010. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. Journal of Agricultural and Food Chemistry 59 (11): 5819–5829. DOI:
Grossmann K. 2010. Auxin herbicides: current status of mechanism and mode of action. Pest Management Science 66 (2): 113–120. DOI:
Hawkes R.T. 2013. Mechanisms of resistance to paraquat in plants. Pest Management Science 70: 1316–1323. DOI:
Heap I. 2021. International Survey of Herbicide Resistant Weeds. Available on: [Accessed: 18 February 2021].
Heap I. 2014. Herbicide resistant weeds. In: “Integrated Pest Management” (D. Pimentel, R. Peshin, eds). Springer, Dodrecht. DOI:
Holm L.G., Doll J., Holm E., Pancho J. V., Herberger J. P. 1997. World Weeds: Natural Histories and Distribution. Wiley, Toronto.
Joris H.A.W., Caires E.F., Scharr D.A., Bini A.R., Haliski A. 2016. Liming in the conversion from degraded pastureland to a no-till cropping system in Southern Brazil. Soil Tillage Research 162: 68–77. DOI:
Jugulam M., Shyam C. 2019. Non-target-site resistance to herbicides: Recent developments. Plants 8 (10): 417. DOI:
Kaundun S.S., Jackson L.V., Hutchings S.J., Galloway J., Marchegiani E., Howell A., Moreno R. 2019. Evolution of target-site resistance to glyphosate in an Amaranthus palmeri population from Argentina and its expression at different plant growth temperatures. Plants 8 (11): 512. DOI:
Kaspary T.E., Lamego F.P., Langaro A.C., Ruchel Q., Agostinetto D. 2016. Investigation of the mechanism of resistance to glyphosate herbicide in hairy fleabane. Planta Daninha 34 (3): 555–564. DOI:
Kissmann K.G., Groth D. 1999. Plantas Infestantes e Nocivas. 2 Edição, BASF, São Paulo.
Kleinman Z., Rubin B. 2017. Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Management Science 73 (1): 246–253. DOI:
Kraus T.E., Mckersie B.D., Fletcher R.A. 1995. Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. Journal of Plant Physiology 145: 570–576. DOI:
Kubes M., Yang H., Richter G.L., Cheng Y., Mlodzinska E., Wang X., Hoyerová K. 2012. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. The Plant Journal 69: 640–654. DOI:
Kusano T., Suzuki H. 2015. Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism. Springer, New York, USA, 345 pp.
Lazaroto C.A., Fleck N.G., Vidal R.A. 2008. Biology and ecophysiology of horseweed (Conyza bonariensis e Conyza canadensis). Ciência Rural 38 (3): 852–860. DOI: (in Portuguese).
Lehoczki E., Laskay G., Pölös E., Mikulás J. 1984. Resistance to triazine herbicides in horseweed (Conyza canadensis). Weed Science 32 (5): 669–674. DOI:
Marochio C.A., Bevilaqua M.R.R., Takano H.K., Mangolim C.A., Oliveira Junior R.S., Machado M.F.P.S. 2017. Genetic admixture in species of Conyza (Asteraceae) as revealed by microsatellite markers. Acta Scientiarum. Agronomy 39 (4): 437–445. DOI:
Matzrafi M., Lazar T.W., Sibony M., Rubin B. 2015. Conyza species: distribution and evolution of multiple target-site herbicide resistances. Planta 242 (1): 259–267. DOI:
Mithila J., Hall J. C. 2005. Comparison of ABP1 over-expressing Arabidopsis and under-expressing tobacco with an auxinic herbicideresistant wild mustard (Brassica kaber) biotype. Plant Science 169: 21–28. DOI:
Moretti M.L., Hanson B.D. 2016. Reduced translocation is involved in resistance to glyphosate and paraquat in Conyza bonariensis and Conyza canadensis from California. Weed Research 57 (1): 25–34. DOI:
Moretti M.L., Van Horn C.R., Robertson R., Segobye K., Weller S.C., Young B.G., Johnson W.G., Sammons R.D., Wang D., Schulz B. 2018. Glyphosate resistance in Ambrosia trifida: Part 2. Rapid response physiology and non-targetsite resistance. Pest Management Science 74 (5): 1079–1088. DOI:
Nandula V.K., Eubank T.W., Poston D.H., Koger C.H., Reddy K.N. 2006. Factors affecting germination of horseweed (Conyza canadensis). Weed Science 54 (5): 898–902. DOI:
Osuna M., De Prado R. 2003. Conyza albida: a new biotype with ALS inhibitor resistance. Weed Research 43 (3): 221–226. DOI:
Pazmiño D.M., Rodríguez-Serrano M., Sanz M., Romero-Puertas M.C., Sandalio L.M. 2013. Regulation of epinasty induced by 2,4-dichlorophenoxyacetic acid in pea and Arabidopsis plants. Plant Biology 16: 809–818. DOI:
Pereira V.G.C. 2019. Characterization of Conyza sumatrensis resistance to the herbicide paraquat. Master’s thesis. Universidade Estadual Paulista “Julio Mesquita Filho”. Botucatu SP. (in Portuguese).
Piasecki C., Carvalho I.R., Cechin J., Goulart F.A., Maia L.C.D., Agostinetto D., Vargas L. 2019. Oxidative stress and differential antioxidant enzyme activity in glyphosate-resistant andsensitive hairy fleabane in response to glyphosate treatment. Bragantia 78: 379–396. DOI:
Pimentel D., Burgess M. 2014. Environmental and economic costs of the application of pesticides primarily in the United States. p. 47–71. In: “Integrated Pest Management: Pesticide Problems” (D. Pimentel, R. Peshin, eds). Springer, New York, USA.
Pinho C.F., Leal J.F.L., Santos Souza A., Oliveira G.F.P.B., Oliveira C., Langaro A.C., Zobiole L.H.S. 2019. First evidence of multiple resistance of Sumatran Fleabane [‘Conyza sumatrensis’ (Retz.) E. Walker] to five-mode-of-action herbicides. Australian Journal of Crop Science 13 (10): 1688. DOI:
Pölös E., Laskay G., Szigeti Z., Pataki S.Z., Lehoczki E. 1988. Photosynthetic properties and cross-resistance to some urea herbicides of triazine-resistant Conyza canadensis Cronq (L.). Zeitschrift für Naturforschung C 42 (7–8): 783–793. DOI:
Powles S.B., Yu Q. 2010. Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology 61: 317–347. DOI:
Preston C., Malone J.M. 2014. Inheritance of resistance to 2,4-D and chlorsulfuron in a multiple resistant population of Sisymbrium orientale. Pest Management Science 71: 1523–1528. DOI:
Preston C., Wakelin A.M. 2008. Resistance to glyphosate from altered herbicide translocation patterns. Pest Management Science 64 (4): 372–376. DOI:
Pruski J.F., Sancho G. 2006. Conyza sumatrensis var. leiotheca (Compositae: Astereae), a new combination for a common neotropical weed. Novon: A Journal for Botanical Nomenclature 16 (1): 96–101. DOI:
Queiroz A.R., Delatorre C.A., Lucio F.R., Rossi C.V., Zobiole L.H., Merotto A. 2019. Rapid necrosis: a novel plant resistance mechanism to 2, 4-D. Weed Science 68 (1): 6–18. DOI:
Rodríguez-Serrano M., Pazmiño D.M., Sparkes L., Rochetti A., Hawes C., Romero-Puertas M.C., Sandalio L.M. 2014. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics. Journal of Experimental Botany 65: 4783–4793. DOI:
Romero M.C. 2014a. Conyza bonariensis (L.) Cronq.. Herbario de la Universidad de Almería. Available on: <> [Accessed: January 05, 2022].
Romero M.C. 2014b. Conyza canadensis (L.) Cronq. Herbario de la Universidad de Almería. Available on: [Accessed: January 05, 2022].
Romero M.C. 2014c. Conyza sumatrensis (Retz.) E. Walker. Herbario de la Universidad de Almería. Available on: [Accessed: January 05, 2022].
Roux F., Reboud X. 2005. Is the cost of herbicide resistance expressed in the breakdown of the relationships between characters? A case study using synthetic-auxin-resistant Arabidopsis thaliana mutants. Genet Research 85: 101–110. DOI:
Rüegg W.T., Quadranti M., Zoschke A. 2007. Herbicide research and development: challenges and opportunities. Weed Research 47 (4): 271–275. DOI:
Sammons R.D., Gaines T.A. 2014. Glyphosate resistance: state of knowledge. Pest Management Science 70 (9): 1367–1377. DOI:
Santos G., Oliveira Jr. R.S., Constantin J., Francischini A.C., Machado M.F.P., Mangolin C.A., Nakajima J.N. 2014a. Conyza sumatrensis: A new weed species resistant to glyphosate in the Americas. Weed Biology and Management 14 (2): 106–114. DOI:
Santos G., Oliveira Jr. R.S., Silvério R., Constantin J., Francischini A.C., Osipe J.B. 2014b. Multiple resistance of Conyza sumatrensis to chlorimuronethyl and to glyphosate. Planta Daninha 32: 409–416. DOI:
Shaaltiel Y., Gressel J. 1986. Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis. Pesticide Biochemichal Physiology 26: 22–28.
Smith A.E. 1989. Degradation, fate, and persistence of phenoxyalkanoic acid herbicides in soil. Reviews of Weed Science 4: 1–24.
Soares A.A.F., Fregonezi A.M.D.T., Bassi D., Mangolin C.A., Oliviera Collet S.A., Oliveira Junior R.S., Machado M.F.P.S. 2015. Evidence of high gene flow between samples of horseweed (Conyza canadensis) and hairy fleabane (Conyza bonariensis) as revealed by isozyme polymorphisms. Weed Science 63 (3): 604–612. DOI:
Song Y. 2014. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. Journal of Integrative Plant Biology 56 (2): 106–113. DOI:
Summers L.A. 1980. The Bipyridinium Herbicides. New York: Academic Press, 449 pp.
Szigeti Z., Rácz I., Darkó É., Lásztity D., Lehoczki E. 1996. Are either SOD and catalase or the polyamines involved in the paraquat resistance of Conyza canadensis? Journal of Environmental Science Health Part B 31: 310–315.
Thebaud C., Abbott R.J. 1995. Characterization of invasive Conyza species (Asteraceae) in Europe: quantitative trait and isozyme analysis. American Journal of Botany 82 (3): 360–368. DOI:
Titapiwatanakun B., Murphy A.S. 2009. Post-transcriptional regulation of auxin transport proteins: cellular trafficking, protein phosphorylation, protein maturation, ubiquitination, and membrane composition. Journal of Experimental Botany 60: 1093–1107. DOI:
Turcsányi E., Surányi G., Lehoczki E., Borbély G. 1994. Superoxide dismutase activity in response to paraquat resistance in Conyza canadensis (L.) Cronq. Journal of Plant Physiology 44: 599–606.
Van Horn C.R., Moretti M.L., Robertson R.R., Segobye K., Weller S.C., Young B.G., Lespérance M.A., Johnson W.G., Schulz B., Gaines T.A. 2018. Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate. Pest Management Science 74 (5): 1071–1078. DOI:
Váradi G., Darkó É., Pölös E., Szigeti Z., Lehoczki E. 1994. Xanthophyll cycle patterns and in vivo photoinhibition in herbicide-resistant biotypes of Conyza canadensis. Journal of Plant Physiology 144 (6): 669–674.
Vaughn K.C., Fuerst E.P. 1985. Structural and physiological studies of paraquat-resistant Conyza. Pesticide Biochemistry and Physiology 24 (1): 86–94.
Walsh T.A., Neal R., Merlo A.O., Honma M., Hicks G.R., Wolff K., Matsumura W., Davies J.P. 2006. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiology 142: 542–552. DOI:
Xu J., Lv B., Wang Q., Li J., Dong L. 2013. A resistance mechanism dependent upon the inhibition of ethylene biosynthesis. Pest Management Science 69: 1407–1414. DOI:
Ye B., Gressel J. 1994. Constitutive variation of ascorbate peroxidase activity during development parallels that of superoxide dismutase and glutathione reductase in paraquat resistant Conyza. Plant Science 102 (2): 147–151.
Yu Q., Cairns A., Powles S. 2007. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225: 499–513. DOI:
Yu J., Wen C. K. 2013. Arabidopsis aux1rcr1 mutation alters auxin resistant targeting and prevents expression of the auxin reporter dr5:gus in the root apex. Journal of Experimental Botany 64: 921–933. DOI:
Zobiole L.H.S., Pereira V.G.C., Albrecht A.J.P., Rubin R.S., Adegas F.S., Albrecht L.P. 2019. Paraquat resistance of Sumatran Fleabane (Conyza sumatrensis). Planta Daninha 37: e019183264. DOI:
Zheng D., Kruger G.R., Singh S., Davis V.M., Tranel P.J., Weller S.C., Johnson W.G. 2011. Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Management Science 67 (12): 1486–1492. DOI: