ORIGINAL ARTICLE
Molecular detection and comparison of Gaeumannomyces graminis var. tritici isolates originating from wheat and rye
 
More details
Hide details
1
The August Cieszkowski Agricultural University, Department of Phytopathology Dąbrowskiego 159, 60-594 Poznań, Poland
CORRESPONDING AUTHOR
Lidia Irzykowska
The August Cieszkowski Agricultural University, Department of Phytopathology Dąbrowskiego 159, 60-594 Poznań, Poland
 
Journal of Plant Protection Research 2007;47(3):299–308
KEYWORDS
TOPICS
ABSTRACT
Gaeumannomyces graminis is an etiologic agent of take-all, economically important disease of cereals worldwide. A polymerase chain reaction with variety-specific primers was successfully used for detection of G. graminis var. tritici in plant tissue. Obtained results showed that this diagnostic method is a very sensitive and useful tool for detection of the pathogen even before disease symptoms arise. DNA polymorphism revealed by RAPD-PCR with three arbitrary primers was suitable for assessing genetic variation among Ggt isolates originating from wheat and rye.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (24)
1.
Augustin C., Ulrich K., Ward E., Werner A. 1999. RAPD-Based Inter- and Intravarietal Classification of Fungi of the Gaeumannomyces-Phialophora Complex. J. Phytopathol. 147: 109–117.
 
2.
Bateman G.I., Ward E., Hornby D., Gutteridge R.J. 1997. Comparisons of isolates of the take-all fungus, Gaeumannomyces graminis var. tritici, from different cereal sequences using DNA probes and non-molecular methods. Soil Biol. Biochem. 29: 1225–1232.
 
3.
Bryan G.T., Daniels M.J., Osbourn A.E. 1995. Comparison of fungi within the Gaeumannomyces–Phialophora complex by analysis of ribosomal DNA sequences. Appl. Environ. Microbiol. 61: 681–689.
 
4.
Bryan G.T., Labourdette E., Melton R.E., Nicholson P., Daniels M.J., Osbourn A.E. 1999. DNA polymorphism and host range in take-all fungus, Gaeumannomyces graminis. Mycol. Res. 103: 319–327.
 
5.
Cook R. J. 2003. Take-all of wheat. Physiol. Mol. Plant Pathol. 62: 73–86.
 
6.
Fouly H.M., Wilkinson H.T., Domier L.L. 1996. Use of RAPD for identification of Gaeumannomyces species. Soil Biol. Biochem. 28: 703–710.
 
7.
Fouly H.M., Wilkinson H.T., Chen W.D. 1997. Restriction analysis of internal transcribed spacers and the small subunit gene of ribosomal DNA among four Gaeumannomyces species. Mycologia 89: 590–597.
 
8.
Fouly H.M., Wilkinson H.T. 2000. Detection of Gaeumannomyces graminis varieties using polymerase chain reaction with variety-specific primers. Plant Dis. 84: 947–951.
 
9.
Freeman J., Ward E. 2004. Gaeumannomyces graminis, the take-all fungus and its relatives. Mol. Plant Pathol. 5 (4): 235–252.
 
10.
Goodwin P.H., Hsiang T., Xue B.G., Liu H.W. 1995. Differentiation of Gaeumannomyces graminis from other turf-grass fungi by amplification with primers from ribosomal internal transcribed spacers. Plant Pathol. 44: 384–391.
 
11.
Harvey P.R., Langridge P., Marshall D.R. 2001. Genetic drift and host-mediated selection cause genetic differentiation among Gaeumannomyces graminis populations infecting cereals in southern Australia. Mycol. Res. 105: 927–935.
 
12.
Henson J.M., Goins T., Grey W., Mathre D.E., Elliott M.L. 1993. Use of polymerase chain reaction to detect Gaeumannomyces graminis DNA in plants grown in artificially and naturally infected soil. Phytopathology 83 (3): 283–287.
 
13.
Herdina, Harvey P., Ophel-Keller K. 1996. Quantification of Gaeumannomyces graminis var.tritici in infected roots and soil using slot-blot hybridization. Mycol. Res. 100: 962–970.
 
14.
Hornby D. 1998. Take-all disease of cereals. A regional perspective. CAB International Oxon, New York, 384 pp.
 
15.
Irzykowska L. 2006. Markery molekularne w diagnostyce chorób podstawy źdźbła i korzeni zbóż. (Molecular markers in diagnostics of cereal foot and root diseases). Post. Nauk Rol. 6: 31–40.
 
16.
Irzykowska L., Irzykowski W., Jarosz A., Gołębniak B. 2005. Association of Phytophthora citricola with leather rot disease of strawberry. J. Phytopathol. 153 (11): 680– 685.
 
17.
Nei M., Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Acad. Sci. USA 76: 5269–5273.
 
18.
Rachdawong S., Cramer C.L., Grabau E.A., Stromberg V.K., Lacy G.H., Stromberg E.L. 2002. Gaeumannomyces graminis vars. avenae, graminis and tritici identified using PCR amplification of avenacinase-like genes. Plant Dis. 86: 652–660.
 
19.
Schesser K., Luder A., Henson J.M. 1991. Use of Polymerase chain reaction to detect the take-all fungus, Gaeumannomyces graminis, in infected wheat plants. Appl. Environ. Microbiol. 57 (2): 553–556.
 
20.
Van de Peer Y., de Wachter R. 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10: 569–570.
 
21.
Ward E., Akrofi A.Y. 1994. Identification of fungi in the Gaeumannomyces-Phialophora complex by RFLPs of PCR-amplified ribosomal DNAs. Mycol. Res. 98: 219–224.
 
22.
Ward E., Bateman G.L. 1999. Comparison of Gaeumannomyces - and Phialophora-like fungal pathogens from maize and other plants using DNA methods. New Phytol. 141: 323–331.
 
23.
Weber Z., Irzykowska L., Bocianowski J. 2005. Analysis of mycelial growth rates and RAPD-PCR profiles in a population of Gaeumannomyces graminis var. tritici originating from wheat plants grown from fungicide-treated seed. J. Phytopathol. 153: 318–324.
 
24.
White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: “PCR Protocols: A Guide to Methods and Applications” (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T. J. White, eds.). Academic Press, Inc., New York.
 
eISSN:1899-007X
ISSN:1427-4345