ORIGINAL ARTICLE
Monitoring and possibilities of controlling nematodes and fruit damaging pests of Rosa spp. with microbial-derived products
Eligio Malusa 1, A-F  
,  
Malgorzata Tartanus 1, A-C,E-F
,  
Grażyna Soika 1, A,C,E-F
 
 
More details
Hide details
1
Department of Plant Protection Against Pests, Research Institute of Horticulture, Skierniewice, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Eligio Malusa   

Department of Plant Protection Against Pests, Research Institute of Horticulture, Skierniewice, Poland
Online publish date: 2019-10-15
Submission date: 2019-02-15
Acceptance date: 2019-09-11
 
Journal of Plant Protection Research 2019;59(3):334–340
KEYWORDS
TOPICS
ABSTRACT
Interest in growing roses in Poland is related to the production of cut flowers as ornamentals and of petals and hips for cosmetics or food products. However, recently there has been an increasing number of reports of pest damage on rose plantations. In the case of fruits the damage has been attributed to flies (Rhagoletis alternata) or moths (Cydia tenebrosana), while nematodes have been implicated for growth reduction even on plantations grown under soil-less conditions. Field trials and laboratory experiments to test the possibility of controlling R. alternata larvae or pupae with entomopathogenic fungi and nematodes resulted in a lack of parasitism. On the other hand, the use of Bacillus thuringiensis subsp. kurstaki or Cydia pomonella granulovirus effectively controlled C. tenebrosana. Meloidogyne incognita infestation of roses growing on rock wool substrate was drastically reduced by Arthrobothrys oligospora or abamectin. Factors such as the method of product application or pest susceptibility to the used microbial-based products accounted for the observed differences in efficacy.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
FUNDING
The research was partly funded by a grant from the Polish Ministry of Agriculture and Rural Development on novel methods of protecting fruit crops in organic farming, with particular emphasis on growing berry plants.
 
REFERENCES (38)
1.
Abbott W.S. 1925. A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2): 265–267. DOI: https://doi.org/10.1093/jee/18....
 
2.
Akulov E.N., Kirichenko N.I., Petko V.M. 2014. Non-target species of Grapholita (Lepidoptera, Tortricidae) attracted by the synthetic pheromone of the oriental fruit moth in South Siberia. Plant Health – Research and Practice 2 (8): 31–50.
 
3.
Anonymous 2018. International Statistics for Flowers and Plants. Vol. 66. International Association of Horticultural Producers. Chilton, UK, 190 pp.
 
4.
Bauer G. 1998. Structure and function of a non-interactive, reactive insect-plant system. Oecologia 115 (1–2): 154–160. DOI: https://doi.org/10.1007/s00442....
 
5.
Bordallo J.J., Lopez-Llorca L.V., Jansson H.B., Salinas J., Persmark L., Asensio L. 2002. Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytologist 154 (2): 491–499. DOI: https://doi.org/10.1046/j.1469....
 
6.
Chandler D., Bailey A.S., Tatchell G.M., Davidson G., Greaves J., Grant W.P. 2011. The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B 366: 1987–1998.
 
7.
Chattopadhyay P., Banerjee G. 2018. Recent advancement on chemical arsenal of Bt toxin and its application in pest manhttps://doi.org/10.1007/s13205-018-122....
 
8.
Chattopadhyay P., Banerjee G., Mukherjee S. 2017. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech 7 (1): 60. DOI: https://doi.org/10.1007/s13205....
 
9.
Chrzanowski A., Kubasik W., Demski K. 2015. Zwójkowate (Tortricidae, Lepidoptera) drzewostanów karkonoszy gatunki i ich potencjalne znaczenie dla środowiska. Acta Scientiarum Polonorum Silvarum Colendarum Ratio et Industria Lignaria 14 (4): 289–299. (in Polish).
 
10.
Cossentine J., Thistlewood H., Goettel M., Jaronski S. 2010. Susceptibility of preimaginal western cherry fruit fly, Rhagoletis indifferens (Diptera: Tephritidae) to Beauveria bassiana (Balsamo) Vuillemin Clavicipitaceae (Hypocreales). Journal of Invertebrate Pathology 104 (2): 105–109. DOI: https://doi.org/10.1016/j.jip.....
 
11.
Dimbi S., Maniania N.K., Lux S.A., Ekesi S., Mueke J.K. 2003. Pathogenicity of Metarhizium anisopliae (Metsch.) Sorokin and Beauveria bassiana (Balsamo) Vuillemin, to three adult fruit fly species: Ceratitis capitata (Weidemann), C. rosa var. fasciventris Karsch and C. cosyra (Walker) (Diptera: Tephritidae). Mycopathologia 156 (4): 375–382. DOI: https://doi.org/10.1023/b:myco....
 
12.
Eisenback J.D. 1985. Detailed morphology and anatomy of second-stage juveniles, males, and females of the genus Meloidogyne (root-knot nematode). p. 95–112. In: “An Advanced Treatise on Meloidogyne – vol. 1: Biology and Control” (J.N. Sasser, C.C. Carter, eds.). North Carolina State University Graphics. Raleigh, NC, USA, 175 pp.
 
13.
Ekesi S., Maniania N.K., Lux S.A. 2012. Mortality in three African tephritid fruit fly puparia and adults caused by the entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. Biocontrol Science and Technology 12 (1): 7–17. DOI: https://doi.org/10.1080/095831....
 
14.
Gebhardt M., Eberle K.E., Radtke P., Jehle J.A. 2014. Baculovirus resistance in codling moth is virus-isolate dependent and the consequence of a mutation in viral gene pe38. Proceedings of the National Academy of Sciences of the United States of America 111 (44): 15711–15716. DOI: https://doi.org/10.1073/pnas.1....
 
15.
Georgis R., Koppenhofer A.M., Lacey L.A., Belair G., Duncan L.W., Grewal P.S., Samish M., Tan L., Torr P., van Tol R.W.H.M. 2006. Successes and failures in the use of parasitic nematodes for pest control. Biological Control 38 (1): 103–123. DOI: https://doi.org/10.1016/j.bioc....
 
16.
Hänisch D., Hallmann J., Klenner M., Braunsmann J. 2005. Plant-parasitic nematodes in soil-less culture systems. Nematology 7 (1): 1–4. DOI: https://doi.-org/10.1163/15685....
 
17.
Headrick D.H., Goeden R.D. 1998. The biology of nonfrugivorous tephritid fruit flies. Annual Review of Entomology 43 (1): 217–241. DOI: https://doi.org/10.1146/annure....
 
18.
Huang W-K., Sun J-H., Cui J-K., Wang G-F., Kong L-A., Peng H., Chen S-L., Peng D-L. 2014. Efficacy evaluation of fungus Syncephalastrum racemosum and nematicide Avermectin against the root-knot nematode Meloidogyne incognita on cucumber. PLoS ONE 9 (2): e89717. DOI: https://doi.org/10.1371/journa....
 
19.
Khalil M.S.H 2013. Abamectin and Azadirachtin as eco-friendly promising biorational tools in integrated nematodes management programs. Journal Plant Pathology Microbiology 4: 174. DOI: https://doi.org/10.4172/2157-7....
 
20.
Khalil M.S.H., Allam A.F.G., Barakat A.S.T. 2012. Nematicidal activity of some biopesticide agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. Journal of Plant Protection Research 52 (1): 47–52. DOI: https://doi.org/10.2478/v10045....
 
21.
Klasa A., Kaczorowska E., Soszyński B. 2011. Fruit flies (Diptera: Tephritidae) on the Polish Baltic Coast. Polish Journal of Entomology 80 (3): 555–574. DOI: https://doi.org/10.2478/v10200....
 
22.
Kumar A., Nadda G., Shanker A. 2004. Determination of chlorpyrifos 20% EC (Dursban 20 EC) in scented rose and its products. Journal Chromatography A 1050 (2): 193–199. DOI: https://doi.org/10.1016/s0021-....
 
23.
Lacey L.A. 2017. Entomopathogens used as microbial control agents. p. 3–12. In “Microbial Control of Insect and Mite Pests – From Theory to Practice” (L.A. Lacey, ed.). Elsevier. Amsterdam, The Netherland, 482 pp.
 
24.
Lacey L.A., Georgis R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology 44 (2): 218–225.
 
25.
Lehman P.S. 1987. Migration, survival, and reproduction of nematodes in rockwool. Proceedings of the Florida State Horticulture Society 100: 350–355.
 
26.
López-Pérez J.A., Edwards S., Ploeg A. 2011. Control of root-knot nematodes on tomato in stone wool substrate with biological nematicides. Journal of Nematology 43: 110–117.
 
27.
Maciąg A., Kalemba D. 2015. Composition of rugosa rose (Rosa rugosa Thunb.) hydrolate according to the time of distillation. Phytochemistry Letters 11: 373–377. DOI: https://doi.org/10.1016/j.phyt....
 
28.
Malusá E., Canfora L., Pinzari F., Tartanus M., Łabanowska B.H. 2017. Improvement of soilborne pests control with agronomical practices exploiting the interaction of entomophagous fungi. p. 577–591 In: “Plant-Microbe Interactions in Agro-Ecological Perspectives” (D.P. Singh, H.B. Singh, R. Prabha, eds.). Springer Nature. Singapore. 656 pp. DOI: https://doi.org/10.1007/978-98....
 
29.
Marosz A. 2013. Changes in ornamental nursery production following Polish integration with the European Union. Annals Warsaw University Life Science – SGGW, Horticultural Landscape Architecture 34: 51–60.
 
30.
Niu X.M., Zhang K.Q. 2011. Arthrobotrys oligospora: a model organism for understanding the interaction between fungi and nematodes. Mycology 2 (2): 59–78. DOI: https://doi.org/10.1080/215012....
 
31.
Patel S. 2017. Rose hip as an underutilized functional food: Evidence-based review. Trends Food Science and Technology 63: 29–38. DOI: https://doi.org/10.1016/j.tifs....
 
32.
Slauta V. 1984. Fruit pests of rose. [Vrediteli plodov šipovnika]. Zašč. Rast. 6: 45. (in Russian).
 
33.
Tartanus M., Malusá E., Danelski W. 2018a. Monitoring of fruit pests in organic soft fruits plantations and testing of biocontrol agents. Proceedings 9th International IOBC/WPRS Workshop on Integrated Plant Protection of Soft Fruits. Riga, Latvia, 5-7 September 2018: 22.
 
34.
Tartanus M., Malusá E., Łabanowska B.H., Łabanowski G.S. 2018b. Survey of pests and beneficial fauna in organic small fruits plantations. Proceedings 18th International Conference on Organic Fruit-Growing. Hohenheim, Germany, 19–21 February 2018: 221–224.
 
35.
Willer H., Meredith S. 2016. Organic farming in Europe. p. 190–198. In: “The World of Organic Agriculture – Statistics and Emerging Trends” (H. Willer, J. Lernoud, eds.). FIBL, Frick, Switzerland and IFOAM Organic International, Bonn, Germany, 340 pp.
 
36.
Winiarska W. 1998. Owady (Insecta: Lepidoptera, Diptera) uszkadzające owoce róży pomarszczonej, Rosa rugosa (Thunb.). Wiadomości Entomolologiczne 17 (2): 105–108. (in Polish).
 
37.
Yee W.L., Lacey L.A. 2003. Stage-specific mortality of Rhagoletis indifferens (Diptera: Tephritidae) exposed to three species of Steinernema nematodes. Biological Control 27 (3): 349–356. DOI: https://doi.org/10.1016/s1049-....
 
38.
Zimmermann G. 2007. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology 17 (6): 553–596.
 
eISSN:1899-007X
ISSN:1427-4345