ORIGINAL ARTICLE
New fungal pathogens and endophytes associated with Salsola
Mina Razghandi 1, A-D,   Abbas Mohammadi 1, A,C-D,F  
,   Morteza Ghorbani 2, B-D,   Mohammad Reza Mirzaee 3, C-F
 
More details
Hide details
1
Plant Protection Department, University of Birjand, Birjand, South Khorasan, Iran
2
Biology Department, University of Birjand, Birjand, South Khorasan, Iran
3
Plant Protection Research, South Khorasan Agricultural and Natural Resources Research and Education Center, Birjand, South Khorasan, Iran
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Abbas Mohammadi   

Plant Protection Department, University of Birjand, Birjand, South Khorasan, Iran
Submission date: 2020-06-12
Acceptance date: 2020-08-05
Online publication date: 2020-10-22
 
Journal of Plant Protection Research 2020;60(4):362–368
 
KEYWORDS
TOPICS
ABSTRACT
Species of the genus Salsola belong to the family Chenopodiaceae and are associated with large saline areas in eastern Iran. The aim of the study was to isolate and characterize the endophytic and phytopathogenic fungal communities from non-mycotrophic Salsola species. Sampling was done from different parts of Salsola plants in the Birjand region in 2017 and 2018. Isolation and identification of fungal isolates were done using biological characteristics and ITS region sequences. The pathogenicity of the representative isolates was investigated by cultivating disinfected Salsola incanescens seeds under greenhouse conditions and inoculating seedlings with a fungal spore suspension from 7 day old fungal colonies on PDA media. Based on morphological and molecular data, 27 isolates from 11 fungal species were isolated and identified from Salsola tissues. Alternaria alternata, A. chlamydospora, Aspergillus terreus, Macrophomina phaseolina, Fusarium longipes, Ulocladium atrum, and Talaromyes pinophilus caused root or stem rotting and yellowing leaf of S. incanescens under greenhouse conditions. Aspergillus niger induced S. incanescens crown swelling without any pathogenicity. Clonostachys rosea, F. redolens and F. proliferatum grew as endophytic fungi on S. incanescens roots. This is the first report of phytopathogenic M. phaseolina, F. longipes, T. pinophilus, endophytic F. redolens and A. niger as a swelling agent on S. incanescens.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (26)
1.
Aletaha R., Sinegani S.A., Zafari D. 2018. A survey on endophytic fungi within roots of Chenopodiaceae species under different environmental conditions. Mycosphere 9 (4): 618–634. DOI: 10.5943/mycosphere/9/4/1.
 
2.
Allen M.F., Allen E.B., Friese C.F. 1989. Responses of the nonhyphen; mycotrophic plant Salsola kali to invasion by vesicular– arbuscular mycorrhizal fungi. New Phytologist 111 (1): 45–49. DOI: 10.1111/j.1469-8137.1989.tb04216.x.
 
3.
Assadi M. 1984. Studies on the autumn plants of kavir, Iran. Iranian Journal of Botany 2 (2): 125–247.
 
4.
Bellemain E., Carlsen T., Brochmann C., Coissac E., Taberlet P., Kauserud H. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology 10 (1): 1–9. DOI: 10.1186/1471-2180-10-189.
 
5.
Berner D., Cavin C., McMahon M., Loumbourdis I. 2006. First report of anthracnose of Salsola tragus caused by Colletotrichum gloeosporioides in Greece. Plant Disease 90 (7): 971. DOI: 10.1094/PD-90-0971B.
 
6.
Choi Y., Hyde K.D., Ho W. 1999. Single spore isolation of fungi. Fungal Diversity 3: 29–38.
 
7.
Ghahreman A., Attar F. 2018. Biodiversity of plant species in Iran. Vol. 1. Central Herbarium of Tehran University, Tehran, Iran, 1176 pp.
 
8.
Imran Z.K. 2011. Isolation and identification species of Ulocladium preuss from different regions in Iraq. Basrah Journal of Agricultural Sciences 24 (2): 27–46.
 
9.
Johnson N. 2002. Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phosphorus and soil organic matter: implications for reclamation. Journal of Applied Ecology 35 (1): 86–94. DOI: 10.1046/j.1365-2664.1998.00277.x.
 
10.
Kobae Y., Ohtomo R. 2015. An improved method for brightfield imaging of arbuscular mycorrhizal fungi in plant roots. Soil Science and Plant Nutrition 62 (1): 27–30. DOI: 10.1080/00380768.2015.1106923.
 
11.
Kolomiets T.M., Berner D., Mukhina Z.M., Alexandrova А.V., Skatenok O.O. 2010. Search for fungi as potential biological control agents of Salsola tragus. In: APS Annual Meeting, 7–11 August 2010, Charlotte, NC, USA.
 
12.
Kumar S., Stecher G., Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33 (7): 1870–1874. DOI: 10.1093/molbev/msw054.
 
13.
Leslie J.F., Summerell B.A. 2006. The Fusarium Laboratory Manual. Blackwell Publishing, Victoria, Australia, 388 pp. DOI: 10.1002/9780470278376.
 
14.
Lieth H., Mochtchenko M. 2003. Cash Crop Halophytes: Recent Studies. Tasks for Vegetation Science. Kluwer Academic Publisher, Dordrecht, The Netherlands, 250 pp. DOI: 10.1007/978-94-017-0211-9.
 
15.
Muhsin K., Zwain T. 1989. Correlation between fungal populations and amino acid levels of salt desert plants. Sydowia 41: 209–218.
 
16.
Mukherjee P.K., Horwitz B.A., Singh U.S., Mala M., Schmoll M. 2013. Trichoderma: Biology and Applications. CABI, Wallingford, UK, 344 pp. DOI: 10.1079/9781780642475.0000.
 
17.
Park D. 1955. Experimental studies on the ecology of fungi in soil. Transactions of the British Mycological Society 38 (2): 130–142. DOI: 10.1016/S0007-1536(55)80024-1.
 
18.
Pugh G.J.F., Williams G.M. 1968. Fungi associated with Salsola kali. Transactions of the British Mycological Society 51 (3): 389–396. DOI: 10.1016/S0007-1536(68)80005-1.
 
19.
Rezvani Moghaddam P., Koocheki A. 2003. A comprehensive survey of halophytes in Khorasan province of Iran. p. 189–195. In: “Cash Crop Halophytes: Recent Studies” (H. Lieth, M. Mochtchenko, eds.). Tasks for Vegetation Science. Kluwer Academic Publisher, Dordrecht, The Netherlands. DOI: 10.1007/978-94-017-0211-9_21.
 
20.
Rivera-Orduña F.N., Suarez-Sanchez R.A., Flores-Bustamante Z.R., Gracida-Rodriguez J.N., Flores-Cotera L.B. 2010. Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Diversity 47 (1): 65–74. DOI: 10.1007/s13225-010-0045-1.
 
21.
Samson R.A., Pitt J.I. 1986. Advances in Penicillium and Aspergillus Systematics. Vol. 102. Springer Science & Business Media, Boston, MA, USA, 483 pp. DOI: 10.1007/978-1-4757-1856-0.
 
22.
Seemann J. 1979. Water requirements of plants. p. 294–297. In: “Agrometeorology” (J. Seemann, Y.I. Chirkov, J. Lomas, B. Primault, eds.). Springer-Verlag, Berlin, Heidelberg, New York, 334 pp. DOI: 10.1007/978-3-642-67288-0_35.
 
23.
Towhidi A., Saberifar T., Dirandeh E. 2011. Nutritive value of some herbage for dromedary camels in the central arid zone of Iran. Tropical Animal Health and Production 43 (3): 617–622. DOI: 10.1007/s11250-010-9741-9.
 
24.
Weber E. 2017. Invasive Plant Species of the World: A Reference Guide to Environmental Weeds. 2dn ed. CABI Publishing, Wallingford, UK, 595 pp. DOI: 10.5860/choice.41-5019.
 
25.
Woudenberg J., Groenewald J., Binder M., Crous P. 2013. Alternaria redefined. Studies in Mycology 75 (1): 171–212. DOI: 10.3114/sim0015.
 
26.
Zaman S., Padmesh S., Tawfiq H. 2010. Seed germination and viability of Salsola imbricata Forssk. International Journal of Biodiversity and Conservation 2 (12): 388–394. DOI: 10.5897/IJBC.9000123.
 
eISSN:1899-007X
ISSN:1427-4345