PREVALENCE OF AFLATOxin B1 CONTAMINATION IN PRE- AND POST-HARVEST MAIZE KERNELS, FOOD PRODUCTS, POULTRY AND LIVESTOCK FEEDS IN TAMIL NADU, INDIA

Ayyathurai Vijayasamundeeswari, Munusamy Mohankumar, Muthusamy Karthikeyan, Selvaraj Vijayanandraj, Vaikuntavasen Paranidharan, Rethinasamy Velazhahan*

Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore-641003, Tamil Nadu, India

Received: November 13, 2008
Accepted: May 27, 2009

Abstract: Aflatoxins, a group of mycotoxins mainly produced by Aspergillus flavus and A. parasiticus, have adverse health effects on humans and livestock that ingest aflatoxin- contaminated food products and feeds. To secure the safety of food and feed, regular monitoring of aflatoxin levels is necessary. In order to understand the magnitude of aflatoxin contamination, a survey was conducted in different agro-ecological zones of Tamil Nadu, India and 242 samples consisting of pre- and post-harvest maize kernels, food products, poultry and livestock feeds were collected from farmers’ fields, poultry farms, retail shops and supermarkets and analyzed for aflatoxin B1 (AFB1) contamination by enzyme-linked immunosorbent assay (ELISA) using antiserum raised against aflatoxin B1-Bovine serum albumin (AFB1-BSA). The results indicated that 61.3% of the maize kernel samples were contaminated with AFB1 and the levels of AFB1 in 26% of the pre- and post-harvest maize kernels exceeded 20 µg/kg. The highest level of AFB1 (245 µg/kg) was recorded in post-harvest maize kernel samples. In food products AFB1 was detected only in two samples out of 30 samples tested. Furthermore, the levels ranged from 0.6 to 3.7 µg/kg. In poultry feeds, AFB1 was detected in 30 out of 53 samples and the levels ranged from 0.7 to 31.6 µg/kg. Among the 40 livestock feed samples evaluated 29 samples were contaminated with AFB1, at level ranging from 1.8 to 244.9 µg/kg.

Key words: Aflatoxin B1, enzyme-linked immunosorbent assay, Zea mays, feed

INTRODUCTION

Aflatoxins are a group of mycotoxins that are produced by strains of Aspergillus flavus Link ex Fries and A. parasiticus Speare while growing on groundnuts, maize, cotton, chilli and many other agricultural commodities. Aflatoxins are acutely toxic, carcinogenic, mutagenic, teratogenic, and immunosuppressive to most mammalian species (Eaton and Gallagher 1994). Currently, 18 different types of aflatoxins have been identified, with aflatoxin B1, B2, G1, G2, M1, and M2 being the most common. Aflatoxins B1 and B2 are produced by A. flavus, whereas B1, B2, G1, and G2 are produced by A. parasiticus (Ong 1975). Aflatoxin M1, a major metabolite of aflatoxin B1, may occur in milk and its products if obtained from livestock that have consumed aflatoxin B1 contaminated feed (Polan et al. 1974). Aflatoxin contaminated diet has been linked with the high incidence of liver cancer (Bababunmi et al. 1978). Li et al. (2001) reported that the levels of aflatoxins B1, B2, and G1 were significantly higher in corn from high incidence areas of human hepatocellular carcinoma. Hence the U.S Food and Drug Administration has set an aflatoxin limit of 20 parts per billion (ppb) for foods and for most feeds and feed ingredients. The European Union has enacted very severe aflatoxin tolerance level of 2 µg/kg aflatoxin B1 and 4 µg/kg total aflatoxins in nuts and cereals for human consumption (Bankole and Adebawo 2003). The regulations on the import and sale of aflatoxin contaminated food products results in huge losses each year to the agriculture and feed industries.

Maize and peanut are excellent substrates for the growth of A. flavus and aflatoxin production. Furthermore, maize and peanut are the major ingredients in poultry and livestock feeds. Bhat et al. (1997) reported that 26% of maize kernels collected from different parts of India were contaminated with AFB1 beyond the level of Indian standard for consumption (30 µg/kg). Setamou et al. (1997) reported that up to 42.5% of maize samples in Benin were contaminated with aflatoxin. Kpodo (1996) reported that the maize samples collected from Ghana contained aflatoxins at levels ranging from 20 to 355 µg/kg. Waliyar et al. (2003) reported that 43% of maize samples collected from retail shops or supermarkets in and around Hyderabad, Andhra Pradesh, India were contaminated with toxin with the highest AFB1 level of 806 µg/kg. Therefore, much emphasis has been focused on the control or elimination of these fungi and/or their...
toxic metabolites in food grains and livestock feeds. To secure the safety of food and feed, regular monitoring of aflatoxin levels is necessary. The present study was conducted to understand the level of aflatoxin contamination in maize kernels, food products and feeds in different agro-ecological zones of Tamil Nadu, India.

MATERIALS AND METHODS

Survey and collection of samples
A survey was conducted in different agro-ecological zones (Coimbatore, Dindigul, Madurai, Salem, Theni, Trichy, Namakkal, Perambalur, Viruthunagar and Thoothukudi districts) of Tamil Nadu, India over three years (2005–2007) in order to understand the magnitude of aflatoxin contamination of maize kernels, food products and feeds. Pre- and post-harvest maize kernel samples were collected from farmers’ fields. Poultry feed samples were collected from poultry farms from different parts of Tamil Nadu. Food products (Hollow corn, groundnut candies, raw groundnuts) and livestock feeds were obtained from retail shops or supermarkets in different locations of Tamil Nadu.

Antibody production
Polyclonal antibodies against aflatoxin B1-Bovine serum albumin (AFB1-BSA) were raised in rabbit as described by Reddy et al. (2001). Eighty µg of AFB1-BSA (Sigma, USA) in 0.25 ml of 0.1 M phosphate buffer (pH 7.0) was emulsified with an equal volume of Freund’s complete adjuvant and injected intramuscularly at multiple sites into the hind leg of a New Zealand White inbred rabbit. For the subsequent four injections at weekly intervals, AFB1-BSA was emulsified with Freund’s incomplete adjuvant. The rabbit was bled and the titer of the antiserum was determined by indirect competitive ELISA.

Detection of AFB1 by indirect competitive ELISA
Samples (2 g) were powdered in a coffee grinder and then mixed with 10 ml of solvent containing 70 ml methanol + 30 ml water + 0.5 g KCl. The mixture was incubated on a rotary shaker for 30 min at 250 rpm at room temperature (28±2°C). The extract was filtered through Whatman No. 41 filter paper and the filtrate was used for determination of AFB1 content by indirect competitive ELISA following the method of Reddy et al. (2001). Briefly, the wells of microtiter plates were coated with 150 µl per well of AFB1-BSA at a concentration of 100 µg/ml in carbonate coating buffer. The plates were washed with phosphate buffer saline (PBS) containing Tween-20 (PBST) and treated with PBST-BSA. One hundred µl of sample extract or AFB1 standard was mixed with 50 µl of AFB1-BSA antiserum (1:6000) in 0.2% PBST-BSA and added into the wells. This step was followed by the addition of alkaline phosphatase labelled goat antirabbit IgG conjugate diluted to 1:4000 in PBST-BSA. P-nitrophenyl phosphate prepared in 10% diethanolamine was used as substrate. The plates were incubated at room temperature and then read in an ELISA reader at 405 nm. The concentration of AFB1 in the samples was calculated based on the absorbance of the AFB1 standard.

RESULTS AND DISCUSSION

In the present study 242 samples consisting of pre- and post-harvest maize kernels, food products, poultry and livestock feeds collected from farmers’ fields, poultry farms, retail shops and supermarkets from different agro-ecological zones of Tamil Nadu, India were analyzed for AFB1 contamination. As shown in table 1, aflatoxin contamination in maize kernels was observed in more than 61.3% of the samples tested and the levels of AFB1 in 26% of the pre- and post-harvest maize kernels exceeded 20 µg/kg. The highest level of AFB1 (245 µg/kg) was recorded in post-harvest maize kernel samples. In food products, AFB1 was detected only in two samples out of 30 samples tested. Furthermore the levels of AFB1 ranged from 0.6 to 3.7 µg/kg. In poultry feeds, AFB1 was detected in 30 out of 53 samples and its levels ranged from 0.7 to 31.6 µg/kg. Among the 40 livestock feed samples evaluated, 29 samples were contaminated with AFB1 at the level ranging from 1.8 to 244.9 µg/kg (data not shown). The occurrence of high levels of AFB1 in food and feed stuffs has been reported by several workers (Reddy et al. 1984; Singh et al. 1984; Balasubramanian 1985; Selvasubramanian et al. 1987; Dhavan and Chaudary 1995; Dutta and Das 2001). Dutta and Das (2001) reported that AFB1 content in feed samples collected from different parts of Northern India was very high with an average of 0.412–0.514 ppm. It is well known that growth of Aspergillus spp. and subse-

<table>
<thead>
<tr>
<th>Sample</th>
<th>No. of samples analyzed</th>
<th>No. of samples with aflatoxin B1 in the range [µg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Pre-harvest maize kernels</td>
<td>59</td>
<td>12</td>
</tr>
<tr>
<td>Post-harvest maize kernels</td>
<td>60</td>
<td>34</td>
</tr>
<tr>
<td>Food samples</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Poultry feeds</td>
<td>53</td>
<td>23</td>
</tr>
<tr>
<td>Livestock feeds</td>
<td>40</td>
<td>11</td>
</tr>
</tbody>
</table>
quent production of aflatoxins in maize is dependent on a number of factors such as temperature, humidity, insect injury, handling during harvest and storage (Holl et al. 2003). A significant positive correlation between moisture content of maize seeds and *A. flavus* population and aflatoxin production has been reported (Oyebanji and Efioyewere 1999). Karikeyan et al. (2009) reported wide variability in aflatoxin production potential of different isolates of *A. flavus* from maize. Hence the variations in aflatoxin content among different samples may be mainly the result of unsatisfactory storage conditions, high moisture content and the occurrence of aflatoxicogenic fungi.

Aflatoxin affects the quality of the commodities thereby hitting the export trade in the international market particularly in the post World Trade Organization (WTO) period. The importing countries impose Sanitary and Phytosanitary specifications (SPS) and Hazard Analysis Critical Control Point (HACCP) before importing agricultural commodities to their countries according to the WTO agreement. In the present study, the level of AFB1 in more than 26% of the contaminated pre- and post-harvest maize kernel samples exceeded 20 µg/kg, the tolerance level fixed by the World Health Organization. The presence of aflatoxin in maize kernels and feeds presents a risk for human and animal health. Therefore, proper post-harvest handling of maize and proper storage of feeds can greatly help in reducing infection by *Aspergillus* spp. and subsequent contamination with aflatoxins.

ACKNOWLEDGEMENTS

This study was supported by the Indian Council of Agricultural Research, New Delhi

REFERENCES

POLISH SUMMARY

WYSTĘPOWANIE PRZED- I POZBIOROWEGO SKAŻENIA ZIARNIKÓW KUKURYDZY, PRODUKTÓW SPOŻYWCZYCH, DROBIU I PASZY ZWIERZĘCEJ AFLATOKSYNĄ B1 W TAMIL NADU W INDIACH

Aflatoxyny, grupa mykotoksyn wytwarzanych głównie przez *Aspergillus flavus*, ma szkodliwy wpływ na zdrowie ludzi i zwierząt domowych spożywających produkty spożywcze i paszę skazałą aflatoxyną. Aby zapewnić bezpieczeństwo żywności i paszy, potrzebny jest regularny monitoring zawartości w nich aflatoxyn. W celu rozpoznania zakresu skażenia aflatoxyną przeprowadzono badania w różnych agroekologicznych strefach Tamil Nadu w Indiach. Pobrano 242 próby ziarników kukurydzy przed i po zbiorze, produkty spożywcze, drobę i paszę zwierzęcą uzyskano z pól farmerskich, farm drobiu, sklepów detalicznych i supermarketów, a następnie...
nie analizowano je na obecność zakażenia aflatoksyną B₁ (AFB₁) przy wykorzystaniu serum albuminy (AFB₁ -BSA). Wyniki badań wskazywały, że 61,3% prób ziarniaków kukurydzy było skażone AFB₁, a poziom AFB₁ w 26% ziarniakach pobranych przed i po zbiorze kukurydzy przekraczał 20 µm/kg. Najwyższy poziom AFB₁ (945 µm/kg) wykryto w próbach ziarniaków pobranych po zbiorze. W produktach spożywczych AFB₁ wykryto tylko w dwóch próbach z 30 prób badanych. Ponad to, poziom ten zamykał się w granicach od 0,6 do 3,7 µm/kg. W paszy dla drobiu, AFB₁ wykryto w 30 próbach z 53 badanych, a poziom AFB₁ wynosił od 0,7 do 31,6 µm/kg. Spośród 40 prób badanej paszy zwierzęcej 29 prób było skażonych AFB₁ na poziomie od 1,8 do 244,9 µm/kg.