Proteolytic activity in the midgut of the crimson speckled moth Utethesia pulchella L. (Lepidoptera: Arctiidae)
More details
Hide details
Department of Plant Protection, College of Agriculture, University of Guilan, 41635-1314, Rasht, Iran
Department of Biological Control, Iranian Research Institute of Plant Protection, 19395-1454, Tehran, Iran
Department of Entomology, Natural Resources Research, Research Center of Agricutural and Natural Resources, 1731, Bushehr, Iran
Arash Zibaee
Department of Plant Protection, College of Agriculture, University of Guilan, 41635-1314, Rasht, Iran
Journal of Plant Protection Research 2012;52(3):368–373
Samples were prepared from the midgut of 4th instar larvae of the crimson speckled moth Utethesia pulchella L. to find proteolytic activity and properties. Result revealed the presence of high proteolytic activity in the midgut when taking into account specific proteinases including trypsin-like, chymotrypsin-like, elastase and two exopeptidase (aminopeptidase and carboxipeptidase). The optimal pH of general protease was 8 and 7 when using azocasein and hemoglobin as general substrates, respectively. The optimal temperature of the total proteolytic activity in the midgut of U. pulchella was 25°C and 30°C when using azocasein and hemoglobin, respectively. Proteolytic activity was inhibited significantly by soybean trypsin inhibitor (SBTI), phenylmethylsulfonyl fluoride (PMSF), trypsin inhibitor (TLCK), chymotrypsin inhibitor (TPCK) and Phenanthroline. These results provide evidences for the presence of serine proteinases as the major proteases in the midgut of U. pulchella; a key rangeland pest in warm climates. The interaction between digestive proteases and protease inhibitors have potentially important consequences for pest management programs.
The authors have declared that no conflict of interests exist.
Applebaum S.W. 1985. Biochemistry of digestion. p. 279–312. In: “Comparative Insect Physiology, Biochemistry and Pharmacology” (G.A. Kerkut, L.I. Gilbert, eds.). Pergamon, Toronto, Canada, 592 pp.
Bernardi B., Tedeschi G., Ronchi S. 1996. Isolation and some molecular properties of a trypsin-like enzyme from larvae of European corn borer Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae). Insect. Biochem. Mol. Biol. 26 (9): 883–889.
Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem. 72 (2): 248–254.
Broadway R.M. 1995. Are insects resistant to plant proteinase inhibitors? J. Insect. Physiol.41 (2): 107–116.
Broadway R.M., Duffey S.S. 1986. Plant proteinase inhibitors: Mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua.J.Insect. Physiol. 32 (10): 827–833.
Chougule N.P., Doyle E., Fitches E., Gatehouse J.A. 2008. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. J. Insect Physiol. 54 (3): 563–572.
Christeller J.T., Liang W.A., Markwick N.P., Burgess E.P.J. 1992. Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and proteases inhibitory interactions. Insect. Biochem. Mol. Biol. 22 (7): 248–254.
Cohen A.C. 1993. Organization of digestion and preliminary characterization of salivary trypsin like enzymes in a predaceous Heteropteran, Zelus renadii. J. Insect. Physiol.39 (10): 823–829.
Eguchi M., Iwamoto A., Yamauchi K. 1982. Interrelation of proteases from the midgut lumen, epithelia and peritrophic membrane of the silkworm, Bombyx Mori L. Comp. Biochem. Physiol. (A) 72 (2): 359–363.
Elpidina E.N., Vinokurov K.S., Gromenko V.A., Rudenskaya Y.A., Dunaevsky Y.E., Zhuzhikov D.P. 2001. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Arch. Insect. Biochem. Physiol. 48 (4): 206–216.
Farmer E.E., Ryan C.A. 1992. Octadecanoid precursors of jasmonic acid activate the syntesis of wound-inducible proteinase inhibitors. Plant. Cell. 4 (2): 129–134.
Folin O., Ciocalteu V. 1927. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem.73: 627–650.
Garcia-Carreno F.L., Dimes L.E., Haard N.F. 1993. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous protease inhibitors. Analyt. Biochem. 214 (1): 61–69.
Gatehouse A.M.R., Gatehouse J.A. 1998. Identifying proteins with insecticidal activity: use of encoding genes to produce insect-resistant transgenic crops. Pest. Sci. 52 (2): 165–175.
Gatehouse A.M.R., Norton E., Davison G.M., Babbe S.M., Newell C.A., Gatehouse J.A. 1999. Digestive proteolytic activity in larvae of tomato moth, Lacanobia oleracea; effects of plant proteinase inhibitors in vitro and in vivo. J. Insect Physiol. 45 (6): 545–558.
Gazzoni D.L., Pedroso Junior M., Garagorry F. 1998. Mathematical simulation model of the velvetbean caterpillar. Pesquisa Agropecuária Brasileira 33: 385–396.
Gorman M.J., Andreeva O.V., Paskewitz S.M. 2000a. Molecular characterization of five serine protease genes cloned from Anopheles gambiae hemolymph Insect Biochem. Mol. Biol. 30 (1): 35–46.
Gorman M.J., Andreeva O.V., Paskewitz S.M. 2000b. Sp22D: a multidomain serine protease with a putative role in insect immunity. Gene 251 (1): 9–17.
Harrison J.F. 2001. Insect acid-base physiology. Ann. Rev. Entomol. 46: 221–250.
Hegedus D.D., Baldwin M., O’Grady L., Braun S., Gleddie A., Sharpe D., Lydiate M. 2003. Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning and expressed sequence tag analysis. Arch. Insect Biochem. Physiol. 53 (1): 30–47.
Hilder V.A., Gatehouse A.M.R., Sheerman S.E., Barker R.F., Boulter D. 1987. A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160–163.
Kuriyama K., Eguchi M. 1985. Conversion of the molecular form alkaline treatment of gut protease from the silkworm Bomby mori. Comp. Biochem. Physiol.(B)82 (4): 575–579.
Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
Lee M.J., Anstee J.H. 1995. Endoproteases from the midgut of larval Spodoptera littoralis includes a chymotrypsin-like enzyme with an extended binding site. Insect. Biochem. Mol. Biol. 25 (1): 49–61.
Ma C.C., Kanost M.R. 2000. A beta 1,3-glucan recognition protein from an insect, Manduca sexta agglutinates microorganisms and activates the phenoloxidase cascade. J. Biol. Chem.275: 7505–7514.
Marchetti S., Chiaba C., Chisa F., Bandiera A., Pitotti A. 1998. Isolation and partial characterization of two trypsins from the larval midgut of Spodoptera littoralis (Boisduval). Insect Biochem. Mol. Biol. 28 (11): 449–458.
Mohammadi D., Farshbaf Pour Abad R., Rashidi M.R., Mohammadi S.A. 2010. Activity and some properties of Helicoverpa armigera Hubner and Spodoptera exigua Hubner (Lep.: Noctuidae) midgut protease. Munis. Entomol. Zool. 5 (2): 697–706.
Nakajima Y., Tsuji Y., Homma K., Natori S. 1997. A novel protease in the pupal yellow body of Sarcophaga peregrine(flesh fly). J. Biol. Chem. 272 (38): 23805–23810.
Ozgur E., Yucel M., Oktem H.A. 2009. Identification and characterization of hydrolytic enzymes from the midgut of Sunn Pest of wheat (Eurygaster integriceps). Int. J. Pest Manage. 55 (4): 359–364.
Purcell J.P., Greenplate J.T, Sammons R.D. 1992. Examination of midgut luminal proteinase activities in six economically important insects. Insect Biochem. Mol. Biol. 22 (1): 41–47.
Ranjbar M. Sendi J.J., Zibaee A. 2011. Proteolytic activity in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae), Pomegranate carob moth. Res. Rep. 8 (2): 132–142.
Ryan C.A. 1990. Proteinase inhibitors in plants: genes improving defenses against insects and pathogens. Ann. Rev. Phytopathol. 28: 425–449.
Samuels R.I. Charnley A.K., Reynolds S.E.A. 1993. cuticle degrading proteinase from the moulting fluid of the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 23 (5): 607–614.
SAS Institute. 1997. SAS/STAT User’s guide for personal computers. SAS Institute, Cary, NC.
Shaw E., Mares M., Cohen W. 1965. Evidence for an active-center hystidine in trypsin through use of a specific reagent 1-chloro-3-tosylamido-7-amino-2-heptanona, the chloromethyl ketone derived from N-tosyl-L-lysine. Biochem. 4 (10): 2219–2224.
Teo L.H., Hammond A.M., Woodring J.P. et al. 1990. Digestive enzymes of the velvetbean caterpillar (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 88: 820–826.
Terra W.R., Ferreira C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Com. Biochem. Physiol. (B) 109 (1): 1–62.
Terra W.R., Ferreira C. 2005. Biochemistry of digestion. p. 171–224. In: “Comprehensive Molecular Insect Science” (L.I. Gilbert, K. Iatrou, S.S. Gill, eds.). San Diego, Elsevier, 3300 pp.
Zibaee A., Bandani A.R., Malagoli D. 2011. Purification and characterization of phenoloxidase from the hemocytes of Eurygaster integriceps (Hemiptera: Scutelleridae). Comp. Biochem. Physiol. B 158 (1): 117–123.
Zibaee A. 2012a. Digestive enzymes of large cabbage white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae) from developmental and site of activity perspectives. Italian. J. Zool. 79 (1): 13–26.
Zibaee A. 2012b. Proteolytic profile in the larval midgut of Chilo Suppressalis Walker (Lepidoptera: Crambidae). Entomol. Res. 42 (1): 142–150.