Second generation energy crops and farmland birds - Central and East European perspective
More details
Hide details
Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland
Piotr Tryjanowski
Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland
Submission date: 2016-06-02
Acceptance date: 2016-08-18
Journal of Plant Protection Research 2016;56(3):211–220
The development of cellulosic bioethanol and other second-generation (2G) biofuels has gone through various phases during the last few years. The prospect of technological breakthroughs stimulates extensive research on turning cellulose into bioethanol or biodiesel. Agricultural or forestry residues and some plants, referred to as ‘lignocellulosic energy crops’ or ‘second generation (2G) energy crops’ can provide feedstock for new types of biofuels. The impact of lignocellulosic energy crops on farmland birds has been relatively well studied. This is surprising since the technology of converting these crops into fuel has so recently been developed. However, we believe that some questions regarding potential bird use of 2G energy crops have still not been answered. In Europe, most research has been carried out in agricultural areas of Western Europe. However, Central & Eastern Europe host the highest densities of farmland birds and, in general, the highest biodiversity. There is huge potential for 2G energy cropping due to large areas of mainly marginal land. We have outlined possible discrepancies between the results obtained from W. Europe and potential relationships between birds and 2G energy crops in Central Europe.
The authors have declared that no conflict of interests exist.
Anderson G.Q.A., Haskins L.R., Nelson S.H. 2004. The effects of bioenergy crops on farmland birds in the United Kingdom: a review of current knowledge and future predictions. p. 199–218. In: “Biomass and Agriculture: Sustainability, Markets and Policies” (K. Parris, D. Poincet, eds.). Organization for Economic Cooperation and Development, Paris, France, 572 pp.
Badhan A., McAllister T. 2014. Designer plants for biofuels: a review. Current Metabolomics 2 (3): 1–6.
Báldi A., Batáry P. 2011. Spatial heterogeneity and farmland birds: different perspectives in Western and Eastern Europe. Ibis 153 (4): 875–876.
Baxter D.A., Sage R.B., Hall D.O. 1996. A methodology for assessing gamebird use of short rotation coppice. Biomass and Bioenergy 10 (5–6): 301–306.
Bellamy P.E., Croxton P.J., Heard M.S., Hinsley S.A., Hulmes L., Hulmes S., Nuttall P., Pywell R.F., Rothery P. 2009. The impact of growing miscanthus for biomass on farmland bird populations. Biomass and Bioenergy 33 (2): 191–199.
Berg Ä. 2002. Breeding birds in short-rotation coppices on farmland in central Sweden – importance of Salix height and adjacent habitats. Agriculture, Ecosystems and Environment 90 (3): 265–276.
Boatman N.D., Pietravalle S., Parry H.R., Crocker J., Irving P.V., Turley D.B., Mills J., Dwyer J.C. 2010. Agricultural land use and Skylark Alauda arvensis: a case study linking a habitat association model to spatially explicit change scenarios. Ibis 152 (1): 63–76.
Bright I.A., Anderson G.Q.A, McArthur T., Sage R., Stockdale J., Grice P.V., Bradbury R.B. 2013. Bird use of establishment-stage Miscanthus biomass crops during the breeding season in England. Bird Study 60: 357–369.
Butler S.J., Norris K. 2013. Functional space and the population dynamics of birds in agro-ecosystems. Agriculture, Ecosystems and Environment 164: 200–208.
Dauber J., Brown C., Fernando A.L., Finnan J., Krasuska E., Ponitka J., Styles D., Thrän D., Van Groeningen K.J., Weih M., Zah R. 2012. Bioenergy from “surplus” land: environmental and socio-economic implications. BioRisk 7: 5–50.
Dauber J., Jones M.B., Stout J.C. 2010. The impact of biomass crop cultivation on temperate biodiversity. Global Change Biology Bioenergy 2 (6): 289–309.
DEFRA (Department for Environment, Food and Rural Affairs). 2013. Area of crops grown for bioenergy in England and the UK: 2008–2012. London, UK, 36 pp. Available on: https://www.gov.uk/government/... [Accessed: August 20, 2016].
Engel J., Huth A., Frank K. 2012. Bioenergy production and Skylark (Alauda arvensis) population abundance – a modelling approach for the analysis of land-use change impacts and conservation options. Global Change Biology Bioenergy 4 (6): 713–727.
EC (European Commission). 2012. EU Agriculture – Statistical and economic information – 2012. Available on: http://ec.europa.eu/agricultur... [Accessed: July 15, 2016].
EEA (European Environment Agency). 2004. High Nature Value Farmland. Characteristics, Trends and Future Challenges. Copenhagen, Denmark. EEA Report No.1/2004, 31 pp.
EP (European Parliament). 2013. Fuel quality directive and renewable energy. Available on: http://www.europarl.europa.eu/... [Accessed: July 15, 2016].
Everaars J., Frank K., Huth A. 2014. Species ecology and the impacts of bioenergy crops: an assessment approach with four example farmland bird species. Global Change Biology Bioenergy 6 (3): 252–264.
Fargione J.E., Cooper T.R., Flaspohler D.J., Hill J., Lehman C., McCoy T., McLeod S., Nelson E.J., Oberhauser K., Tilman D. 2009. Bioenergy and wildlife: threats and opportunities for grassland conservation. BioScience 59 (9): 767–777.
Fry D.A., Slater F.M. 2011. Early rotation short rotation willow coppice as a winter food resource for birds. Biomass and Bioenergy 35: 2545–2553.
Goławski A., Kasprzykowski Z. 2011. The significance of cereal stubble and manure heaps for birds wintering in the farmland of eastern Poland. Ardeola 58: 277–286.
Gruar D., Barritt D., Peach W.J. 2006. Summer utilization of oilseed rape by Reed Buntings Emberiza schoeniclus and other farmland birds. Bird Study 53: 47–54.
Hartel T., Hanspach J., Abson D.J., Máthe O., Moga I.M., Fischer J. 2014. Bird communities in traditional wood-pastures with changing management in Eastern Europe. Basic and Applied Ecology 15 (5): 385–395.
Inglis I.R., Isaacson A.J., Smith G.C., Haynes P.J., Thearle R.J.P. 1997. The effect on the woodpigeon (Columba palambus) of the introduction of oilseed rape into Britain. Agriculture, Ecosystems and Environment 61 (2–3): 113–121.
Kukk L., Astover A., Muiste P., Noormets M., Roostalu H., Sepp K., Suuster E. 2010. Assessment of abandoned agricultural land resource for bio-energy production in Estonia. Acta Agriculturae Scandinavica Section B – Soil and Plant Science 60 (2): 166–173.
Lewandowski I., Clifton-Brown J. C., Scurlock J. M. O., Huisman W. 2000. Miscanthus: European experience with novel energy crop. Biomass and Bioenergy 19 (4): 209–227.
Lewandowski I., Scurlock J.M.O., Lindvall E., Christou M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy 25 (4): 335–361.
Lewis S.M., Kelly M. 2014. Mapping the potential for biofuel production on marginal lands: differences in definitions, data and models across scale. ISPRS International Journal of Geo-Information 3 (2): 430–459.
Liesebach M., Mulsow H. 2003. Der Sommervogelbestand einer Kurzumtriebsplantage, der umgebenen Feldflur und des angrenzenden Fichtenwaldes im Vergleich. Holzzucht 54: 27–30.
Lindblath M., Hedwall P.-O., Wallin I., Felton A. M., Böhlenius H., Felton A. 2014. Short-rotation bioenergy stands as an alternative to spruce plantations: implications for bird biodiversity. Silva Fennica 48 (5): 1135.
Marriott P.E., Gomez L.D., McQueen-Mason S.J. 2016. Unlocking the potential of lignocellulosic biomass through plant science. New Phytologist 209 (4): 1366–1381.
Miyake S., Renouf M., Peterson A., McAlpine C., Smith C. 2012. Land-use and environmental pressures resulting from current and future bioenergy crops expansion: a review. Journal of Rural Studies 28 (4): 650–658.
Mola-Yudego B., Gonzalez-Olabarria J.R. 2010. Mapping the expansion and distribution of willow plantations for bioenergy in Sweden: Lessons to be learned about the spread of energy crops. Biomass and Bioenergy 34 (4): 442–448.
Møller A.P., Jökimaki J., Skórka P., Tryjanowski P. 2014. Loss of migration and urbanization in birds: a case study of the blackbird (Turdus merula). Oecologia 175 (3): 1019–1027.
Moorcroft D., Wilson J.D., Bradbury R.B. 2006. The diet of nestling Linnets Carduelis cannabina on lowland farmland before and after agricultural intensification. Bird Study 53 (2): 156–162.
Morelli F., Jerzak L., Tryjanowski P. 2014. Birds as useful indicators of high nature value (HNV) farmland in Central Italy. Ecological Indicators 38: 236–242.
Morelli F. 2014. Relative importance of marginal vegetation (shrubs, hedgerows, isolated trees) surrogate of HNV farmland for bird species distribution in Central Italy. Ecological Engineering 57: 261–266.
OPTIMISC (Optimizing Miscanthus Biomass Production). 2012. Project supported by funding from the European Union’s 7th Framework Programme (FP7/2007–2013) under grant agreement No. 28915. Available on: http://miscanthus.anna-consult... [Accessed: July 17, 2015].
Pedroli B., Elbersen B., Frederiksen P., Grandin U., Heikkilä R., Krogh P.H., Izakovicova Z., Johansen A., Meiresonne L., Spijker J. 2013. Is energy cropping in Europe compatible with biodiversity? – Opportunities and threats to biodiversity from land-based production of biomass for bioenergy purposes. Biomass and Bioenergy 55: 73–86.
Pullin A.S. 2002. Conservation Biology. Cambridge University Press. Cambridge, UK, 355 pp.
Qin Z., Zhuang Q., Cai X. 2015. Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An ecosystem modeling perspective. GCB Bioenergy 7 (6): 1211–1221.
Reboredo F.H., Lidon F., Pessoa F., Ramalho J.C. 2016. The fall of oil prices and the effects on biofuels. Trends in Biotechnology 34 (1): 3–6.
Rivas-Casado M., Meas A., Burgess P.J., Howard D.J., Butler S.J. 2014. Predicting the impacts of bioenergy production on farmland birds. Science of the Total Environment 476–477: 7–19.
Sage R., Cunningham M., Boatman N. 2006. Birds in willow short-rotation coppice compared to other arable crops in central England and a review of bird census data from energy crops in the UK. Ibis 148 (1): 184–197.
Sage R., Cunningham M., Haughton A.J., Mallott M.D., Bohan D.A., Riche A., Karp A. 2010. The environmental impacts of biomass crops: use by birds of miscanthus in summer and winter in southwestern England. Ibis 152 (3): 487–499.
Saha M., Eckelman M.J. 2015. Geospatial assessment of potential bioenergy crop production on urban marginal land. Applied Energy 159: 540–547.
Schulz U., Brauner O., Gruss H. 2009. Animal diversity in short-rotation coppices – a review. Landbauforschung – vTI Agriculture and Forestry Research 59: 171–182.
Semere T., Slater F.M. 2007. Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus x giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass and Bioenergy 31 (1): 20–29.
Seress G., Liker A. 2015. Habitat urbanization and its effects on birds. Acta Zoologica Academiae Scientiarum Hungaricae 61 (4): 373–408.
Shortall O.K. 2013. “Marginal land” for energy crops: exploring definitions and embedded assumptions. Energy Policy 62: 19–27.
Stoate C., Boatman N.D., Borralho R.J., Rio Carvalho C., de Snoo G.R., Eden P. 2001. Ecological impacts of arable intensification in Europe. Journal of Environmental Management 63 (4): 337–365.
Szymkowiak J., Skierczyński M., Kuczyński L. 2014. Are buntings good indicators of agricultural intensity? Agriculture, Ecosystems and Environment 188: 152–197.
Tryjanowski P., Hartel T., Báldi A., Szymański P., Tobółka M., Herzon I., Goławski A., Konvička M., Hromada M., Jerzak L., Kujawa K., Lenda M., Orłowski M., Panek M., Skórka P., Sparks T. H., Tworek S., Wuczyński A., Żmihorski M. 2011. Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithologica 46 (1): 1–12.
Vepsäläinen V. 2010. Energy crop cultivations of reed canary grass – An inferior breeding habitat for the skylark, a characteristic farmland bird species. Biomass and Bioenergy 34 (7): 993–998.