ORIGINAL ARTICLE
The influence of cobalt ions on growth and enzymatic activity of entomopathogenic fungi used in biological plant protection
Łukasz Łopusiewicz 1, A-F  
,  
Cezary Tkaczuk 3, E-F
,  
 
 
More details
Hide details
1
Center of Bioimmobilisation and Innovative Packaging Materials, West Pomeranian University of Technology, Szczecin, Poland
2
Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, West Pomeranian University of Technology, Szczecin, Poland
3
Department of Plant Protection and Breeding, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Łukasz Łopusiewicz   

Center of Bioimmobilisation and Innovative Packaging Materials, West Pomeranian University of Technology, Szczecin, Janickiego 35, 71-270, Szczecin, Poland
Online publication date: 2020-03-23
Submission date: 2019-05-16
Acceptance date: 2019-09-27
 
Journal of Plant Protection Research 2020;60(1):58–67
KEYWORDS
TOPICS
ABSTRACT
This study focused on the effect of heavy metal cobalt ions (at concentrations of 1–1000 ppm) on the development and enzymatic activity of four entomopathogenic fungi: Beauveria bassiana, Beauveria brongniartii, Isaria fumosorosea and Metarhizium robertsii, commonly used in biological plant protection. It was found that each of the tested species of fungi reacted individually to contact with the Co2+ ions at their various concentrations. Depending on the variants of the experiment carried out, there were changes in the development of the mycelia (mainly growth inhibition) and their morphological features (color and structure) in comparison to the control samples. Co2+ ions had a fungistatic effect on all fungal strains, whereas a fungicidal effect was noted at concentrations of 750 ppm and 1000 ppm against M. robertsii and I. fumosorosea, respectively. In addition, there was a discrepancy in enzymatic activity between the tested fungal species developing in the medium with varying concentrations of metal salt. The inhibitory effect of Co2+ ions on lipase production was observed in I. fumosorosea. Protease production was stimulated in B. bassiana at all Co2+ concentrations, whereas in M. robertsii this effect was noted at 1 ppm. The changing dynamics of extracellular fungal hydrolases, due to the action of Co2+ ions, may translate into the role of these microorganisms in the processes of insect pathogenesis. This work suggests that severe pollution of the environment by cobalt could be a restrictive factor for the development and pathogenicity of entomopathogenic fungi and must be taken into account for their successful application in biological plant protection.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (46)
1.
Aishwarya S., Netala V.R., Tartte V. 2017. Screening and identification of heavy metal-tolerant endophytic fungi Lasiodoplodia theobromae from Boswellia ovalifoliolata an endemic plant of Tirumala Hills. Asian Journal of Pharmaceutical and Clinical Research 10 (3): 488–491.
 
2.
An H., Liu Y., Zhao X., Huang Q., Yuan S., Yang X. 2015. Characterization of cadmium-resistant endophytic fungi from Salix variegata Franch. in three gorges reservoir region, China. Microbiological Research 176: 29–37. DOI: 10.1016/j.micres.2015.03.013.
 
3.
Anahid S., Yaghmaei S., Ghobadinejad Z. 2011. Heavy metal tolerance of fungi. Scientia Iranica 18: 502–508. DOI: 10.1016/j.scient.2011.05.015.
 
4.
Baghban A., Sendi J.J., Zibaee A., Khosravi R. 2014. Effect of heavy metals (Cd, Cu, and Zn) on feeding indices and energy reserves of the cotton boll worm Helicoverpa arthesemigera Hübner (Lepidoptera: Noctuidae). Journal of Plant Protection Research 54 (4): 367–373. DOI: 10.2478/jppr-2014-0055.
 
5.
Baldrian P. 2003. Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology 32: 78–91. DOI: 10.1016/S0141-0229(02)00245-4.
 
6.
Bankar A., Zinjarde S., Telmore A., Walke A., Ravikumar A. 2018. Morphological response of Yarrowia lipolytica under stress of heavy metals. Canadian Journal of Microbiology 64 (8): 559–566. DOI: 10.1139/cjm-2018-0050.
 
7.
Beys da Silva W.O., Santi L., Schrank A., Vainstein M.H. 2010. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. Fungal Biology 114 (1): 10–15. DOI: 10.1016/j.mycres.2009.08.003.
 
8.
Collins R.N., Kinsela A.S. 2010. The aqueous phase speciation and chemistry of cobalt in terrestrial environments. Chemosphere 79 (8): 763–771. DOI: 10.1016/j.chemosphere.2010.03.003.
 
9.
Colpaert J., Vandenkoornhuyse P., Adriaensen K., Vangronsveld J. 2000. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist 147 (2): 367–379. DOI: 10.1046/j.1469-8137.2000.00694.x.
 
10.
Desai H., Patel D., Joshi B. 2016. Screening and characterization of heavy metal resistant fungi for its prospects in bioremediation of contaminated soil. International Journal of Current Microbiology and Applied Sciences 5 (4): 652–658. DOI: 10.20546/ijcmas.2016.504.074.
 
11.
Ezzouhri L., Castro E., Moya M., Espinola F., Lairini K. 2009. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. African Journal of Microbiology Research 3: 35–48.
 
12.
Falih A.M. 1997. Influence of heavy-metals toxicity on the growth of Phanerochaete chrysosporium. Bioresource Technology 60: 87–90. DOI: 10.1016/S0960-8524(96)00177-0.
 
13.
Fazli M.M., Soleimani N., Mehrasbi M., Darabian S., Mohammadi J., Ramazani A. 2015. Highly cadmium tolerant fungi: their tolerance and removal potential. Journal of Environmental Health Science & Engineering 13: 19. DOI: 10.1186/s40201-015-0176-0.
 
14.
Fiedler Ż., Sosnowska D. 2017. Side effects of fungicides and insecticides on entomopathogenic fungi in vitro. Journal of Plant Protection Research 57 (4): 354–360. DOI: 10.1515/jppr-2017-0048.
 
15.
Firouzbakht H., Zibaee A., Hoda H., Sohani M.M. 2015. Purification and characterization of the cuticle-degrading proteases produced by an isolate of Beauveria bassiana using the cuticle of the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae). Journal of Plant Protection Research 55 (2): 179–186. DOI: 10.1515/jppr-2015-0024.
 
16.
Frank V., Lesný J., Babej L. 1993. Study of cobalt distribution in fungus Trichoderma viride using 60Co as radioindicator. Journal of Radioanalytical and Nuclear Chemistry Letters 176: 71–75. DOI: 10.1007/BF02164481.
 
17.
Gabriel J., Mokrejš M., Bilý J., Rychlovský P. 1994. Accumulation of heavy metals by some wood-rotting fungi. Folia Microbiologica 39: 115–118. DOI: 10.1007/BF02906805.
 
18.
Hartikainen E.S., Hatakka A., Kahkonen M.A. 2013. Impact of cadmium, chromium, cobalt, lithium and manganese to the growth of fungi and production of enzymes. Expert Opinion on Environmental Biology 2: 3.
 
19.
Hasanzadeh M., Mohammadifar M., Norabadi M.T., Dashtipoor S., Sahebani N., Etebarian H.S. 2012. The effect of different salts (heavy metals) on the mycelium growth of Nematophagous fungi. Archives of Phytopathology and Plant Protection 45 (17): 2087–2094. DOI: 10.1080/03235408.2012.721681.
 
20.
Iram S., Ahmad I., Javed B., Yaqoob S., Akhtar K., Kazmi M.R., Zaman B. 2009. Fungal tolerance to heavy metals. Pakistan Journal of Botany 41 (5): 2583–2594.
 
21.
Joshi B.H. 2014. Evaluation and characterization of heavy metal resistant fungi for their prospects in bioremediation. Journal of Environmental Research and Development 8 (04): 867–882.
 
22.
Machida Y., Nakanishi T. 1984. Purification and properties of pyranose oxidase from Coriolus versicolor. Agricultural and Biological Chemistry 48: 2463–2470. DOI: 10.1080/00021369.1984.10866537.
 
23.
Nies D.H. 1992. Resistance to cadmium, cobalt, zins and nickel in microbes. Plasmid 27: 17–28. DOI: 10.1016/0147-619-X(92)90003-S.
 
24.
Pal A., Ghosh S., Paul A.K. 2006. Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresource Technology 97 (10): 1253–1258. DOI: 10.1016/j.biortech.2005.01.043.
 
25.
Palit S., Sharma A., Talukder G. 1994. Effects of cobalt on plants. The Botanical Review 60 (2): 149–181. DOI: 10.1007/BF02856575.
 
26.
Palmans E., Mares G., Poppe J., Höfte M. 1995. Biodegradation of xenobiotics by heavy metal resistant higher fungi. In: Proceedings of the 9th Forum for Applied Biotechnology. Part II. September 27–29, 1995, Gent, Belgium, 2593 pp.
 
27.
Paveley C.F. 1988. Heavy metal sources and distribution in the soil, with special reference to wales: background ranges, threshold concentrations and sources of lead, zinc, copper, cadmium, cobalt, nickel, manganese and iron in A and B soil horizons. Ph.D. Thesis, University of Bradford.
 
28.
Pearce D.A., Sherman F. 1999. Toxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae. Journal of Bacteriology 181 (16): 4774–4779.
 
29.
Pečiulytė D., Dirginčiutė-Volodkienė V. 2012. Effect of zinc and copper on cultivable populations of soil fungi with special reference to entomopathogenic fungi. Ekologija 58: 65–85. DOI: 10.6001/ekologija.v58i2.2524.
 
30.
Pedrini N., Ortiz-Urquiza A., Huarte-Bonnet C., Zhang S., Keyhani N.O. 2013. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Frontiers in Microbiology 4: 24. DOI: 10.3389/fmicb.2013.00024.
 
31.
Perez-Espinosa A., Moral R., Moreno-Caselles J., Cortes A., Perez-Murcia M.D., Gomez I. 2004. Co phytoavailability for tomato in amended calcareous soils. Bioresource Technology 96 (6): 649–655. DOI: 10.1016/j.biortech.2004.07.002.
 
32.
Pusztahelyi T., Pócsi I. 2014. Chitinase but N-acetyl-β-D-glucosaminidase production correlates to the biomass decline in Penicillium and Aspergillus species. Acta Microbiologica et Immunologica Hungarica 61: 131–143. DOI: 10.1556/AMicr.61.2014.2.4.
 
33.
Ranquet C., Ollagnier-de-Choudens S., Loiseau L., Barras F., Fontecave M. 2007. Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins. Journal of Biological Chemistry (42): 30442–30451. DOI: 10.1074/jbc.M702519200.
 
34.
Rasha F.M. 2017. Intracellular siderophore detection in an Egyptian, cobalt-treated F. solani isolate using SEM-EDX with reference to its tolerance. Polish Journal of Microbiology 66 (2): 235–243. DOI: https://doi.org/10.5604/01.300....
 
35.
Sánchez-Pérez L., Barranco-Florido J., Rodríguez-Navarro S., Cervantes-Mayagoitia J., Ramos-López M. 2014. Enzymes of entomopathogenic fungi, advances and insights. Advances in Enzyme Research 2: 65–76. DOI: 10.4236/aer.2014.22007.
 
36.
Sanglimsuwan S., Yoshida N., Morinaga T., Murooka Y. 1993. Resistance to and uptake of heavy metals in mushrooms. Journal of Fermentation and Bioengineering 75: 112–114. DOI: 10.1016/0922-338X(93)90220-3.
 
37.
Sarathchandran C., Shijith K.V., Vipin K.V., Augusthy A.R. 2014. Study on heavy metals toxicity biomarkers in Aspergillus niger. International Journal of Advances in Pharmacy, Biology and Chemistry 3 (2): 458–461.
 
38.
Singh D., Raina T.K., Sing J. 2017. Entomopathogenic fungi: an effective biocontrol agent for management of insects populations naturally. Journal of Pharmaceutical Sciences and Research 9 (6): 830–839.
 
39.
Tkaczuk C. 2005. The effect of selected heavy metals ions on the growth and conidial germination of the aphid pathogenic fungus Pandora neoaphidis (Remaudiére et Hennebert) Humber. Polish Journal of Environmental Studies 14: 897–902.
 
40.
Tkaczuk C., Majchrowska-Safaryan A., Panasiuk T., Tipping C. 2019. Effect of selected heavy metal ions on the growth of entomopathogenic fungi from the genus Isaria. Applied Ecology and Environmental Research 17 (2): 2571–2582.
 
41.
Tripathi P., Srivastava S. 2007. Mechanism to combat cobalt toxicity in cobalt resistant mutants of Aspergillus nidulans. Indian Journal of Microbiology 47: 336–344. DOI: 10.1007/s12088-007-0061-3.
 
42.
Wang C., Typas M.A., Butt T.M. 2002. Detection and characterisation of pr1 virulent gene deficiencies in the insect pathogenic.
 
43.
fungus Metarhizium anisopliae. FEMS Microbiology Letters 213: 251–255. DOI: 10.1111/j.1574-6968.2002.tb11314.x.
 
44.
Wendling L.A., Ma Y., Kirby J.K., McLaughlin M.J. 2009. A predictive model of the effects of aging on cobalt fate and behavior in soil. Environmental Science & Technology 43: 135–141. DOI: 10.1021/es801322r.
 
45.
Zafar S., Aqil F., Ahmad I. 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology 98 (13): 2557–2561. DOI: 10.1016/j.biortech.2006.09.051.
 
46.
Zimmermann G. 1986. The ’Galleria bait method’ for detection of entomopathogenic fungi in soil. Journal of Applied Entomology 102 (1–5): 213–215. DOI: 10.1111/j.1439-0418.1986.tb00912.x.
 
eISSN:1899-007X
ISSN:1427-4345