The present state of herbicide resistance of weed populations in the Czech Republic
More details
Hide details
Crop Research Institute Division of Plant Health
Jaroslav Salava
Crop Research Institute Division of Plant Health Drnovská 507, 161 06 Prague 6, Czech Republic
Journal of Plant Protection Research 2007;47(4):437–444
In 1985–2002 thirteen weeds resistant to atrazine were selected by a repeated application of triazine herbicides on arable land, in orchards, non-agricultural land and at railways in the Czech Republic. Recently Digitaria sanguinalis biotypes resistant to atrazine have been found at three railway junctions. Long-lasting application of the active ingredient imazapyr at railways caused selection of resistant Kochia scoparia biotypes. High resistance to chlorsulfuron has been discovered in five Apera spica-venti biotypes originating in winter cereals fields. The molecular basis of resistance to atrazine has been identified in the following weeds: Kochia scoparia, Solanum nigrum, Senecio vulgaris, Conyza canadensis, Digitaria sanguinalis, Amaranthus retroflexus and Chenopodium album. The resistance was conferred by a glycine for serine substitution at residue 264 of the D1 protein in all of those weeds. The resistance to imazapyr in Czech Kochia scoparia biotypes was conferred by a mutation at codon 574 of the ALS gene. Analysis of the results of DNA sequencing indicated, that the mutation induced a leucine for tryptophane substitution. There was excellent correspondence between the phenotypic resistance to herbicides of individual plants and the presence of mutations.
The authors have declared that no conflict of interests exist.
Ahrens W.H., Arntzen C.J., Stoller E.W. 1981. Chlorophyll fluorescence assay for he determination of triazine resistance. Weed Sci. 29: 316–322.
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search program. Nucleic Acids Res. 25: 3389–3402.
Anonymous 1992. Manual for Field Trials in Plant Protection. CIBA-GEIGY, Plant Protection. 3rd ed. Basle, Switzerland, 271 pp.
Blyden E.R., Gray J.C. 1986. The molecular basis of triazine herbicide resistance in Senecio vulgaris L. Biochem. Soc. Trans. 14, p. 62.
Boutsalis P., Karotam J., Powles S.B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii. Pestic. Sci. 55: 507–516.
Chodová D., Mikulka J., Kočová M. 1995. Comparison of chlorophyll fluorescence and chlorophyll content in triazine-resistant and -susceptible common groundsel (Senecio vulgaris). Ochr. Rostl. 31: 185–194.
Chodová D., Mikulka J., Kočová M., Salava J. 2004. Origin, mechanism and molecular basis of weed resistance to herbicides. Plant Protect. Sci. 40: 151–168.
Chodová D., Salava J. 2004a. Chromosome number, ploidy level and the molecular basis for the atrazine resistance in Czech kochia [Kochia scoparia (L.) Schrad.] biotypes. Herbologia 5: 73–84.
Chodová D., Salava J. 2004b. The evolution and present state of weed resistance to herbicides in the Czech Republic. Herbologia 5: 11–21.
Foes M.J., Liu L., Tranel P.J., Wax L.M., Stoller E.W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to atrazine and ALS herbicides. Weed Sci. 46: 514–520.
Foes M.J., Liu L., Vigue G., Stoller E.W., Wax L.M., Tranel P.J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci. 47: 20–27.
Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Airoch A.B. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31: 3784–3788.
Goloubinoff P., Edelman M. 1984. Chloroplast coded atrazine resistance in Solanum nigrum: psbA loci from susceptible and resistant biotypes are isogenic except for a single codon change. Nucleic Acids Res.12: 9489–9496.
Gronwald J.W. 1994. Resistance to photosystem II inhibiting herbicides. p. 27–60. In: “Herbicide Resistance in Weeds and Crops“ (S.B. Powles, J.A.M. Holtum, eds.). Biology and Biochemistry. CRC Press, Boca Raton.
Holá D., Kočová M., Rothová O., Chodová D., Mikulka J. 2004. The effect of low growth temperature on Hill reaction and Photosystem 1 activities in three biotypes of Kochia scoparia (L.) Schrad. with different sensitivity to atrazine and ALS-inhibiting herbicides. Plant Soil. Environ. 50: 10–17.
Hirschberg J., McIntosh I. 1983. Molecular basis of herbicide resistance in Amaranthus hybridus.Science 222: 1346–1349.
Körnerová M., Holá D., Chodová D. 1998. The effect of irradiance on Hill reaction activity of atrazine-resistant and -susceptible biotypes of weeds. Photosynthetica 35: 265–268.
Kočová M., Chodová D., Mikulka J. 1988. Využití metody Hillovy reakce pro rozlišování biotypů plevelů rezistentních a citlivých vůči atrazinu. Agrochémia 28: 87–90.
Mikulka J., Chodová D. 2002. Hubení plevelů odolných vůči herbicidům. ÚZPI, Praha, 54 pp.
Nováková K., Salava J., Chodová D. 2005. Biological characteristics of an atrazine resistant common groundsel (Senecio vulgaris L.) biotype and molecular basis of the resistance. Herbologia 6: 65–74.
Nováková K., Soukup J., Wagner J., Hamouz P., Náměstek J. 2006. Chlorsulfuron resistance in silky bent-grass [Apera spica-venti) (L.) Beauv.] in the Czech Republic. Z. Pfl.-Krankh. Pfl.-Schutz. XX:139–146.
Patzoldt W.L., Tranel P.J., Hager A.G. 2002. Variable herbicide responses among Illinois waterhemp (Amaranthus rudis and A. tuberculatus) populations. Crop Protect. 21: 707–712.
Salava J., Chodová D. 2006a. The mechanism of resistance to herbicides in Czech biotype of weeds. p. 581–586. In: “Proceedings of XVIIth Czech and Slovak Conference on Plant Protection”.Czech University of Agriculture in Prague. 12–14.9.2006, 386 pp.