EVALUATION OF THE INSECTICIDAL ACTIVITIES OF THREE EUCALYPTUS SPECIES CULTIVATED IN IRAN, AGAINST HYPHANTRIA CUNEA DRURY (LEPIDOPTERA: ARCTIIDAE)

Asgar Ebadollahi1*, Mehdi Rahimi-Nasrabadi2, Hossein Batooli3, Jafar Geranmayeh4

1 Young Researchers’ Club, Ardabil Branch, Islamic Azad University, P.O. Box 467, Ardabil, Iran
2 Department of Chemistry, Imam Hossein University, P.O. Box 16575-347, Tehran, Iran
3 Isfahan Research Center of Natural Sources and Agriculture, Kashan Station, Kashan, Iran
4 Department of Plant Protection, Faculty of Agriculture, Urmia University, P.O. Box 57135-165, Urmia, Iran

Received: July 1, 2013
Accepted: October 10, 2013

Abstract: In the current study, the larvicidal activity of leaf essential oils from three eucalyptus species (Eucalyptus largiflorens Meull, Eucalyptus oleosa Meull, and Eucalyptus spathulata Hook) against American white moth, Hyphantria cunea Drury 1773 (Lepidoptera: Arctiidae), was investigated. Mortality was recorded daily for three days after treatment. Leaf disc bioassays revealed that all three oils had strong insecticidal activity on the experimental insects insofar as 50% lethal concentrations (LC50) for E. oleosa, E. spathulata, and E. largiflorens at 24 h exposure time were 0.36, 0.61, and 1.24%, respectively. The time needed to kill 50% (LT50) values were calculated as 9.09 h with E. largiflorens, 11.03 h with E. oleosa, and 13.03 h with E. spathulata at the highest concentrations (2.5% for E. largiflorens, 2% for E. oleosa, and 2.5% for E. spathulata). Based on probit analysis, an increase in the susceptibility of the insect was associated with an increase in the different concentrations of all oils and the increase in the time of exposure. The results of this study show that leaf essential oils of E. largiflorens, E. oleosa, and E. spathulata might be considered as a potent source for the production of fine natural larvicides.

Key words: essential oil, Eucalyptus largiflorens, Eucalyptus oleosa, Eucalyptus spathulata, Hyphantria cunea, larvicidal

INTRODUCTION

The fall webworm or American white moth, Hyphantria cunea Drury 1773 (Lepidoptera: Arctiidae), is native to North America but spread into central Europe and Asia in the 1940s (Ito and Miyashita 1968). This polyphagous defoliator has caused great damage to forests, urban ornamental trees, and agricultural crops in China because of its wide host range (Su et al. 2008). Young larvae feed upon the upper and lower leaf surfaces, leaving the veins. Larger larvae feed on the whole leaves and build impressive silk webs that sometimes enclose entire branches (Yarmand et al. 2009). The feeding activity of this pest leaves the trees without leaves. Photosynthesis is significantly decreased, causing low quality of the fruits and several deficiencies in wood processing. An outbreak of fall webworms can completely defoliate host trees. Several consecutive defoliations can cause dieback in the crown, and may contribute to the death of weak, declining trees (El-Sayed et al. 2005). As many as 175 different plant species within 49 families and 108 genera have been known to serve as hosts to the fall webworm (Yang et al. 2006).

The management of H. cunea has been typically carried out by chemical insecticides. But, chemical insecticides are associated with environmental contamination, high levels of resistance and damage to non-target organisms (Elbert and Nauen 2000; Roditakis et al. 2005). To protect crops in modern agriculture and an increasingly regulated world, natural plant-based insecticides can be a feasible plant pest management method and an attractive alternative to synthetic chemical insecticides. Botanicals reputedly pose little threat to the environment, non-target organisms or to human health (Isman 2006). Plant essential oils may be an alternative source for H. cunea control because these are secondary metabolites and a source of bioactive chemicals that plants produce for defense against herbivory and disease (Suthisut et al. 2011). Essential oils are the steam-distillable fraction of plant tissues. These oils are often responsible for a plants distinctive scent or taste. Essential oils have a rather complex composition, with component compounds generally consisting of low-molecular-weight monoterpenes (10-carbon) and related phenols (Toloza et al. 2006). The main characteristics of the essential oils are that they are easily extractable, ecofriendly, biodegradable, possess low or no toxicity against mammals, and are very effective against a wide spectra of insect pests (Lucia et al. 2012).

Although previous reports focused on the potential effectiveness of selected essential oils and their compo-
nants as insecticides (Tripathi et al. 2009; Ebadollahi et al. 2010a; Ebadollahi 2011; Regnault-Roger et al. 2012; Ebadollahi 2013), we know of only two data sources written on the susceptibility of Hyphantria to plant essential oils (Zibaee et al. 2010; 2011). In these two studies, the biological effects of the essential oils isolated from Artemisia annua L. (Asteraceae) and Lavandula stoechas L. (Lamiaceae) against H. cunea were demonstrated.

The genus Eucalyptus has leaves that contain aromatic oils with a characteristic odour whose recovery by steam distillation produces essential oils (Denny 2002). Eucalyptus has been prized as a rich source of essential oil. The oil has been used commercially in food, flavoring, and perfumery, and in the pharmaceutical industries (Batish et al. 2008; Singh et al. 2009). In addition, the essential oils of the Eucalyptus species possesses important biological activities including analgesic, antibacterial, antiinflammatory, antimarial, antiseptic, diaphoretic, disinfectant, and antioxidant properties (Cimanga et al. 2002; Elaissi et al. 2012).

Iran has rich flora containing essential oils useful for medicinal purposes. Iranian plants show potential utilization in insect pest management programs due to their availability, efficiency, and because they are safe for the environment and non-target organisms (Ebadollahi 2011). As part of our ongoing research on natural insecticides from the flora of Iran, three Eucalyptus species including E. largiflorens Meull, E. oleosa Muell, and E. spathulata Hook were collected and tested on H. cunea larvae. This approach will allow us to identify natural and safer agents for the development of biorational insecticides to manage H. cunea.

MATERIAL AND METHODS

Plant materials

The leaves of E. largiflorens, E. oleosa, and E. spathulata were collected in May 2013 from Kashan, Isfahan province, Iran. A voucher specimen of the plants with the voucher specimen numbers of KBG 1493 for E. oleosa, KBG 1344 for E. largiflorens, and KBG 1462 for E. spathulata were deposited at the herbarium of Kashan botanical garden. The leaves were dried in the shade (at room temperature).

Extraction of essential oils

Essential oils were isolated by hydrodistillation from 50 g of dried plant material in 500 ml of distilled water for 12 h using a Clevenger-type apparatus. The oils were dried over anhydrous sodium sulphate and stored in sealed glass vials at 4–5°C prior to the bioassay. The yield of the extraction was calculated based on the dry weight of the each sample.

Insect

Hyphantria cunea larvae were collected from sycamore in Guilan University, Rasht, Iran. They were reared on mulberry leaves in the laboratory, in cages 30 × 30 × 40 cm. The insects were kept in the lab at the temperature of 27±2°C, and 60±5% relative humidity (RH) with 14:10 (L:D) photoperiod. The 3rd instar larvae were used to the experiments.

Bioassay

Different concentrations were prepared to evaluate insect mortality after an initial dose-setting experiment. Bioassay experiments were performed by five concentrations of essential oils (0.4, 0.63, 1, 1.58, and 2.5% from E. largiflorens, 0.1, 0.21, 0.45, 0.95, and 2% from E. oleosa and 0.2, 0.38, 0.61, 1.33, and 2.5% from E. spathulata in acetone as solvent) on 7 cm in diameter mulberry leaf discs in 9 cm in diameter petri dishes. Two fresh mulberry leaf discs were dipped in 20 ml of each concentration for 20 s. After the acetone evaporated (2 min), ten larvae were placed on treated leaf discs in each petri dish. The control insects were kept under the same conditions without any essential oil. Each concentration was replicated four times. The number of dead and live insects for each essential oil was counted at the end of 24, 48, and 72 h exposure periods.

Statistical analysis

Experiments were arranged in a completely randomized design and the means were separated by Tukey’s test at the 5% level. The lethal concentration (LC50 and LC90) and lethal time (LT50 and LT90) values with their fiducial limits were calculated by probit analysis with SPSS software.

RESULTS AND DISCUSSION

The essential oils isolated by hydro-distillation from the leaves of three Eucalyptus species were found to be light yellowish for E. oleosa and E. spathulata, to terra cotta for E. largiflorens liquids. The obtained oil yields for E. largiflorens, E. oleosa, and E. spathulata were 4.5%, 6.7%, and 1.7% (w/w), respectively.

There are several reports showing the insecticidal activity of Eucalyptus essential oils and their main components, in different species (Lucia et al. 2007; Batish et al. 2008; Toloza et al. 2008; Toloza et al. 2010; Ebadollahi et al. 2010b) but the present study is the first to show that essential oils from E. spathulata, E. largiflorens, and E. oleosa can function as insecticide against H. cunea. On the other hand, to the best of our knowledge, there is no published report on the essential oil activities of Eucalyptus against H. cunea. Figure 1 displays the mortality percentages of five different essential oil concentrations used three times on H. cunea larvae. A comparison of the means showed that there were significant differences in the mortality of H. cunea exposed to different essential oil concentrations for 24, 48, and 72 h (Fig. 1). All essential oils revealed strong toxicity against the H. cunea larvae at several concentrations and exposure times. The lethal concentration of 50% (LC50) for E. oleosa, E. spathulata, and E. largiflorens at 24 h exposure time were 0.36, 0.61, and 1.24%, respectively. Therefore, E. oleosa was most efficient and H. cunea larvae were most susceptible (Table 1). The time needed to kill 50% of the population (LT50 values) were calculated as 9.09 h with E. largiflorens, 11.03 h with E. oleosa, and 13.03 h with E. spathulata at the highest concentrations (2.5% for E. largiflorens, 2% for E. oleosa and 2.5% for E. spathulata). Generally, LT50 values decreased when the essential oil concentration increased (Table 2). Based on probit analysis, the susceptibility of the insect increased with exposure.
Fig. 1. Mean mortality of *H. cunea* larvae exposed to different concentrations of the essential oils from *E. largiflorens*, *E. oleosa*, and *E. spathulata*. Different letters on top of columns are significant differences according to Tukey’s test at *p* = 0.05. Columns with the same letter are not significantly different. Vertical bars indicate standard error of the mean (±); very small values are not represented.

Table 1. Results of probit analysis for LC$_{50}$ values from the toxicity of essential oils of *E. largiflorens*, *E. oleosa*, and *E. spathulata* against 3rd instar larvae of *H. cunea* at three different times

<table>
<thead>
<tr>
<th>Essential oil</th>
<th>Time [h]</th>
<th>LC$_{50}$ [%]</th>
<th>Slope</th>
<th>Intercept</th>
<th>Chi-square [df = 3]</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. largiflorens</td>
<td>24</td>
<td>1.24 (0.98–1.68)</td>
<td>1.77</td>
<td>4.83</td>
<td>1.09</td>
<td>0.78*</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>0.90 (0.71–1.11)</td>
<td>2.05</td>
<td>5.09</td>
<td>2.16</td>
<td>0.54*</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>0.76 (0.59–0.92)</td>
<td>2.16</td>
<td>5.26</td>
<td>2.42</td>
<td>0.49*</td>
</tr>
<tr>
<td>E. oleosa</td>
<td>24</td>
<td>0.77 (0.49–1.51)</td>
<td>0.92</td>
<td>5.10</td>
<td>2.72</td>
<td>0.44*</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>0.36 (0.22–0.54)</td>
<td>1.01</td>
<td>5.45</td>
<td>5.30</td>
<td>0.15*</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>0.23 (0.13–0.33)</td>
<td>1.17</td>
<td>5.74</td>
<td>2.66</td>
<td>0.45*</td>
</tr>
<tr>
<td>E. spathulata</td>
<td>24</td>
<td>0.91 (0.67–1.31)</td>
<td>1.41</td>
<td>5.06</td>
<td>0.95</td>
<td>0.81*</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>0.61 (0.44–0.82)</td>
<td>1.47</td>
<td>5.32</td>
<td>2.13</td>
<td>0.54*</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>0.35 (0.08–0.61)</td>
<td>1.75</td>
<td>5.81</td>
<td>5.55</td>
<td>0.14**</td>
</tr>
</tbody>
</table>

*95% lower and upper fiducial limits are shown in parenthesis

*since the significance level is greater than 0.15, no heterogeneity factor is used in the calculation of confidence limits

**since the significance level is less than 0.15, a heterogeneity factor is used in the calculation of confidence limits
The results showed that 1,8-cineole was the main component of the essential oils of all the Eucalyptus species, but the main constituents of the previously mentioned essential oils were different. These differences might have been derived both from harvest time and local, climatic and seasonal factors, or it may be hypothesized that these samples belong to a different chemotype (Rahimi-Nasrabadi, Nazarian et al. 2013). The high amounts of 1,8-cineole in the oils of E. largiflorens, E. olesa, and E. spathulata is remarkable. More than 300 species of Eucalyptus contain volatile oils in their leaves. Out of these 300 species, fewer than 20 are known for their high content of 1,8-cineole (more than 70%). These 20 have been commercially used for the production of essential oils in the pharmaceutical and cosmetic industries (Pino et al. 2002). Furthermore, previous studies have shown that, in general, the toxicity of plant essential oils against insect pests is related to their major components such as 1,8-cineole (Choi et al. 2006; Toloza et al. 2006; Alzogaray et al. 2011; Akhtar et al. 2012).

The toxicities of essential oil’s main components and their relationship, have been investigated by many researches. Regression analysis of component concentrations of different Eucalyptus species with toxicity parameters obtained in Aedes aegypti Linnaeus larvae and adults showed significant correlations. Relationships were revealed between larval mortality and the concentration of 1,8-cineole and p-cymene. This indicated that Eucalyptus species with a higher 1,8-cineole concentration and lower p-cymene concentration have less effect on A. aegypti larvae (Lucia et al. 2008). Toloza et al. (2008) determined the fumigant activity of essential oils from Eucalyptus and its main components on Pediculus humanus Linnaeus capitis De Geer, and a simple regression analysis revealed a significant correlation between KT50 data and the percentage of 1,8-cineole in these essential oils. Furthermore, a significant correlation was observed between the content of 1,8-cineole in Eucalyptus essential oils and the corresponding KT50 data in A. aegypti adults (Lucia et al. 2009). A similar correlation, between KT50 data produced by Eucalyptus essential oils and the percentage of 1,8-cineole, was found by Juan et al. (2011) in Haematobia irritans (Linnaeus) and Alzogaray et al. (2011) in Blattella germanica.

Table 2. Results of probit analysis for LT50 values from the toxicity of essential oils of E. largiflorens, E. olesa, and E. spathulata against 3rd instar larvae of H. cunea at the three high concentrations

<table>
<thead>
<tr>
<th>Essential oil</th>
<th>Concentration [%]</th>
<th>LT50 [h]</th>
<th>Slope</th>
<th>Intercept</th>
<th>Chi-square [df = 1]</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. largiflorens</td>
<td>1.00</td>
<td>39.47</td>
<td>1.50</td>
<td>2.59</td>
<td>1.45</td>
<td>0.23*</td>
</tr>
<tr>
<td></td>
<td>1.58</td>
<td>20.37</td>
<td>0.98</td>
<td>3.72</td>
<td>0.01</td>
<td>0.90*</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
<td>9.09</td>
<td>1.98</td>
<td>3.47</td>
<td>0.01</td>
<td>0.98*</td>
</tr>
<tr>
<td>E. olesa</td>
<td>0.45</td>
<td>41.31</td>
<td>1.83</td>
<td>2.04</td>
<td>0.57</td>
<td>0.45*</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>29.61</td>
<td>1.15</td>
<td>3.30</td>
<td>0.54</td>
<td>0.46*</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>11.03</td>
<td>1.78</td>
<td>3.14</td>
<td>0.04</td>
<td>0.95*</td>
</tr>
<tr>
<td>E. spathulata</td>
<td>0.61</td>
<td>47.51</td>
<td>1.16</td>
<td>3.05</td>
<td>0.18</td>
<td>0.67*</td>
</tr>
<tr>
<td></td>
<td>1.33</td>
<td>20.62</td>
<td>1.22</td>
<td>3.39</td>
<td>0.64</td>
<td>0.42*</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
<td>13.03</td>
<td>2.56</td>
<td>2.14</td>
<td>2.87</td>
<td>0.09**</td>
</tr>
</tbody>
</table>

*a95% lower and upper fiducial limits are shown in parenthesis
*since the significance level is greater than 0.15, no heterogeneity factor is used in the calculation of confidence limits
**since the significance level is less than 0.15, a heterogeneity factor is used in the calculation of confidence limits
(Linnaeus). Essential oils are complex mixtures of various molecules. Their biological effects might be either the result of a synergism of all the molecules or could reflect only those of the main molecules. In that sense, for biological purposes, it could be more informative to study the entire oil rather than some of its components because the concept of synergism seems to be important.

The mechanisms of essential oil toxicity have not been fully identified. However, rapid action of essential oils or its constituents against insect pests is indicative of neurotoxic actions. Treating the insects with essential oils or pure compounds may cause symptoms that indicate neurotoxic activity. These symptoms include hyperactivity, seizures, and tremors followed by knock down. Such symptoms are very similar to those produced by the insecticides pyrethroids (Isman 2006). Enan (2001) suggested that toxicity of the essential oil constituents is related to the octopaminergic nervous system of insects. Octopamine is a neurotransmitter, neurohormone, and circulating neurohormone-neuromodulator. Disruption of octopamine results in a total breakdown of the nervous system in insects. The lack of octopamine receptors in vertebrates provides the mammalian selectivity of essential oils as insecticides. Several reports indicate that essential oils cause insect mortality by inhibiting acetylcholinesterase enzyme (AChE) activity (Kostykovsky et al. 2002; Houghton et al. 2006; Abd El-Galei et al. 2009). However, some activity on the hormone and pheromone system and on the cytochrome P450 monooxygenase enzyme has also been seen (Tsao and Coats 1995; De-Oliveira et al. 1997). These reports in the literature show that there are varied target sites where the mode of action of the essential oils are located.

Results of this and earlier studies indicate that essential oils including E. largiflorens, E. oleosa, and E. spathulata are a source of biologically active vapors which may potentially prove to be efficient insecticides. Furthermore, the evaluated essential oils in the present study are used as pharmaceutical agents, and are thus considered to reducing the harmful effect of conventional insecticides on humans and the environment. Large quantities of plant material must be processed to obtain sufficient quantities of essential oils for commercial-scale tests. Breeding these plants in great quantities then becomes necessary. For the practical application of the essential oils as insecticides, further studies on the development of formulations are necessary to improve efficacy and stability, and to reduce cost.

REFERENCES

