FIRST NOTICE OF PHYTOPHTHORA ROOT AND STEM BASE ROT OF SCIADOPITYS VERTICILLATA IN POLISH ORNAMENTAL NURSERIES

Leszek B. Orlikowski*, Magdalena Ptaszek

Research Institute of Horticulture, 1/3 Konstytucji 3 Maja
96-100 Skierniewice, Poland

Received: January 9, 2012
Accepted: March 12, 2012

Abstract: Severe root and stem base rot was noticed for the first time on Sciadopitys verticillata in 3 hardy ornamental nursery stocks. Phytophthora citrophthora was isolated from about 4/5 of the analysed plants. In the laboratory trials this species caused stem and root rot. On stem parts and needles inoculated by isolates from the host plant and Pinus sylvestris, necrosis was observed to have spread at a similar rate. The needles, however, were colonized significantly quicker than the stem parts.

Key words: Sciadopitys verticillata, nurseries, occurrence, Phytophthora, pathogenicity

Sciadopitys verticillata (Thunb.) Siebold. & Zucc., known as Japanese umbrella pine, is a slow-growing ornamental tree found in Polish nurseries over the last 10 years. Small plants grow to about 30 cm under cover, and later they are put in outside container nurseries. Lambe and Wills (1983) did not notice disease symptoms on plants in the landscape whereas in containers having excessive moisture, the trees are highly susceptible to root rot incited by Phytophthora cinnamomi Rands. Affected plants showed wilting and an off-green color, with needles turning yellow. The reason for such changes were the rottng of the fibrous roots and the discoloration in the wood at the stem base.

The first time yellowing of the needles was noticed on small S. verticillata growing in plastic tunnels and older plants as tall as 50–70 cm was in 2008–2010. This observation took place in two hardy ornamental nursery stocks in the south-east part of Poland and in one nursery in the north of Poland.

The purpose of this study was to evaluate a causal agent of dieback of S. verticillata, and its pathogenicity to a host plant.

Nurseries were surveyed from July to September at one month intervals. On plants as tall as 10–25 cm needles changed color from green to light green and finally to brown (Fig. 1). On the base of the plants, up to 5–10 cm of brown or dark brown discoloration of wood was observed. Most of the roots were dark brown and dead. On older trees growing at outside container nurseries, yellowing and browning of needles was noticed, usually on one part of the plants (Fig. 2). Base rot even extended 15 cm up the stem. Plants showing disease symptoms were placed in plastic bags together with substratum, and transported to the laboratory. The procedure of Orlikowski and Szkuta (2001) was used for isolating microorganisms from diseased plant tissues. Over the span of 3 years, 50 diseased plants were analysed. Rhododendron leaf baits and the procedure described by Themann and Werres (1998) was used for the detection of Phytophthora spp. from the substratum. Obtained isolates were grouped by growth pattern and their morphology. Representative cultures were identified to species on the base of morphology features and confirmed by molecular methods (Èrsek et al. 1994; Trzewik et al. 2006, 2010).

Pathogenicity of P. citrophthora isolates from Pinus sylvestris Michx. seedling and S. verticillata stem base, were evaluated on stem parts, roots, and needles using the procedure of Orlikowski and Szkuta (2001). Additionally, isolates of the species from the host plant and rhododen-
Phytophthora root and stem base rot of Sciadopitys verticillata in Polish hardy ornamental nursery stocks by Szkuta (2004) on diseased Podocarpus alpinus. During the next 4 years, the species was noticed on trees, shrubs and perennials, including coniferous plants (Orlikowski and Szkuta 2001; Orlikowski and Ptaszek 2010; Orlikowski and Valiuskaite 2007; Orlikowski et al. 2010; Oszako and Orlikowski 2004). This study indicates on the increase of host range of *P. citrophthora* as the very active colonizer not only of the host plant but also of rhododendron. These data con-

<table>
<thead>
<tr>
<th>Source of isolates</th>
<th>Days after inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>13.8 a</td>
</tr>
<tr>
<td>Sciadopitys verticillata</td>
<td>14.2 a</td>
</tr>
</tbody>
</table>

Note: means in columns, followed by the same letter, do not differ significantly at the 5% level (Duncan’s multiple range test)
firmed the results of Lambe and Wills (1983) which indicated that *S. verticillata* was not only highly susceptible to *P. cinnamomi* but also to *P. citrophthora*. Different disease symptoms caused by that pathogen were observed. On *Forsythia intermedia*, *Syringa vulgaris* and *Sorbus aucuparia*, the species was the causal agent of stem base rot or tip blight whereas on *Picea abies* and *Pinus sylvestris* the pathogen caused root rot (Orlikowski unpubl., Oszako and Orlikowski 2004). It is possible that besides host plants for *P. citrophthora*, the species may be transferred to nurseries with sprinkling water taken from water ponds or rivers (Trzewik et al. 2011). To our knowledge, this is the first report describing the disease caused by that pathogen on *S. verticillata* in Poland.

Studies were supported by Ministry of Science and Higher Education (475/N-COST/2009/0).

ACKNOWLEDGEMENTS

We thank Aleksandra Trzewik (Research Institute of Horticulture) for molecular identification of *P. citrophthora*.

REFERENCES

