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Abstract 
The cocoa tree is prone to diverse diseases such as stem borer, stem canker, swollen shot, 
and root rot disease which impedes high yield. Early disease detection is a critical com-
ponent of diverse management processes that are implemented throughout the life cycle 
of cocoa plants. Consequently, several studies on the application of detection techniques 
to recognize diseases have been proposed by several researchers. This study proposes the 
YOLOv5m network for cocoa tree disease detection. The development of cocoa disease 
detection systems will aid farmers in early identification prompt response, and efficient 
management of related cocoa tree diseases which will ultimately increase yield and sus-
tainability. To improve the performance of the YOLOv5m network, a Swin Transformer 
(Swin-T) was added to the backbone network to improve cocoa tree disease detection ac-
curacy. By obtaining global information, the K-means++ algorithm was added to modify 
the choice of initial clustering locations, and Efficient Intersection over Union Loss (EIoU) 
was used as a bounding box regression loss function to speed up the bounding box re-
gression rate, resulting in higher precision of the YOLOv5m network. The experimental 
assessment outcome of this study showed that the proposed method YOLOv5m (Swin-T, 
K-means++, EIoU) achieved 96% precision, mAP of 92%, and recall of 94%. Compared to 
the original YOLOv5m, precision improved by 5%, mAP improved by 6%, and recall by 
5%. Comparing the proposed method to the conventional YOLOv5m, the latter showed 
improved performance and better accuracy with a high detection speed and compactness. 
This improvement offers a useful and effective method for detecting diseases related to 
cocoa trees.
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ORIGINAL ARTICLE

Introduction

A crucial area of research in the field of deep learn-
ing is the detection of pests and plant diseases (Shoaib 
et al. 2023). It is a technology that gathers images of 
plants using computer vision equipment to determine 
the existence of diseases in plants. Currently, deep-
learning-based tools for identifying plant diseases 
and pests have largely replaced traditional naked-eye 
methods of identification in the agricultural sector 
(Bhatti et al. 2023). Plant diseases and pest detection 
in real complex natural environments is difficult due 
to factors like low contrast, wide variations in the scale 

of the lesion area and different types, and a lot of noise 
in the lesion image. Deep learning models have seen 
success in recent years in a variety of computer vi-
sion applications (Gong and Zhang 2023). Numerous 
deep learning-based plant diseases and pest detection 
techniques are used in smart agricultural practice, and 
businesses have created a range of deep learning-based 
plant disease detection applications (Nandini 2023). 

Theobroma cacao, also known as the cacao tree or 
cocoa tree, is a small, evergreen tree in the Malvaceae 
family (Debnath et al. 2023).  It is primarily found in 
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the Amazon basin and the Guyana Plateau in neo-
tropical rainforests. It is a typical cauliflorous plant 
that is not strictly monoecious, is cross-pollinated and 
grows to a height of 6–12 m (20–39 ft). The fruit, also 
referred to as cocoa pod, is a kind of indehiscent berry 
that weighs an average of 500 g but can vary depending 
on the clone. It has between 30 and 60 sweet mucilage- 
-coated seeds inside (Snell 2023).

For millions of farmers in Africa, Asia, Central, and 
South America, it provides a substantial and reliable 
base of agricultural income. Cacao is distinguished by 
a significant genetic diversity, and its seeds are the pri-
mary raw material for the multi-billion-dollar choco-
late industry (Appiah 2023). Over the years, cocoa has 
been a significant economic crop and a major source 
of income for many cocoa farmers (Okali 2023), but 
its production has drastically decreased due to low 
yields brought on by crop diseases and farmers’ failure 
to maintain healthy crops (Appiah 2023). Like most 
other tropical perennial plants, the cocoa tree also  
heavily depends on the availability of genetic resources 
from wild sources for genetic improvement, particularly 
for disease resistance standards (Argout et al. 2023). 

The cocoa tree is prone to diverse diseases that im-
pede high production such as stem borer, stem can-
ker, swollen shot, and root rot disease (Ambele et al. 
2023). Stem canker is a pathogenic disease that affects 
cocoa caused by Phytophthora palmivora and P. mega-
karya (Bose et al. 2023). Cocoa stem canker is con-
sidered to be the third most destructive disease that 
affects Cocoa swollen shoot virus disease and black 
pod disease (Nyadanu et al. 2012). Several parts of the 
cocoa tree exhibit stem canker infections. Grayish-
brown, water-soaked lesions on the bark with a wide 
dark brown to black edge are the outward signs of the 
condition (Appiah 2023). These pathogens cause can-
kers by infecting bark, flower cushions, and chupons. 
Such lesions leak a reddish-brown liquid that eventu-
ally dries and turns into a rusty deposit (Adeniyi and  
Asogwa 2023). 

The cocoa swollen shoot virus (CSSV), which be-
longs to the Genus Badna virus, is what causes CSSVD. 
Only seen in West Africa, CSSVD has been docu-
mented in Togo, Sierra Leone, Ghana, Nigeria, and 
Côte d’Ivoire (Muller 2016). CSSVD is considered the 
most financially significant cocoa infection and causes 
15–50% yield loss depending on the severity of the 
strain (George 2019). Cocoa stem borer (cocoa moth) 
is caused by Eulophonotus myrmeleon (Kingsley-Uma-
na et al. 2022). The larvae of the moth feed on the stem, 
thereby resulting in a loss in production yield. Re-
cently, the implementation of integrated management 
practices has led to the adoption of computer-based 
systems for the early detection of cocoa pod borer in-
festation (Bahadur and Dutta 2023). 

The root rot fungus affects a variety of hosts, in-
cluding cocoa plantations and native forest trees. Ad-
ditionally, it affects breadfruit, and it has been linked to 
the atoll-country-specific Pingelap disease (Puig 2023; 
Angira et al. 2024). It was first recorded in coconut in 
Papua New Guinea. Starting at the tips of the branches, 
the fungus’ attack on the roots causes the leaves to turn 
yellow and wilt. All the leaves disappear very quickly. 
On the trunk, the fungus develops a crust that can 
reach a height of 1 meter. It is dark brown to black with 
a white margin, and frequently contains clear liquid 
drops (Bissiri et al. 2023).

Among the various management processes, early 
disease detection is crucial. To this end, several studies 
have reported the use of detection methods to identify 
swollen shoot diseases.  Ramos-Sobrinho et al. (2021) 
investigated molecularly swollen shoot disease in co-
coa produced in Togo by amplification with four PCR 
primer pairs. In a similar study, Ameyaw et al. (2018) 
investigated the variable detection of CSSVD polymer-
ase chain reaction amplification. Recently, computer-
based algorithms have been applied in the detection of 
SSDs (Yan 2022). For instance, Coulibaly et al. (2020) 
studied the detection of swollen shoot diseases using 
convolutional neural networks. Hacinas et al. (2022) 
investigated the detection of the cocoa moth by em-
ploying a deep learning algorithm based on edge com-
puting. Similar studies have been conducted on differ-
ent crops. For instance, in a study by Bhandarkar et al. 
(2019), the detection of borers in coffee was done us-
ing statistical models and deep learning. T﻿his study 
explored related cocoa tree diseases and proposed the 
YOLOv5m model for disease detection. The model 
was enhanced by incorporating the Swin Transformer 
(Swin-T) into the model’s backbone to obtain multi-
scale characteristics. The K-means++ algorithm com-
plemented the model by altering the initial clustering 
location selection which increases the model’s preci-
sion. The Efficient Intersection over Union Loss (EIoU) 
was used as a bounding box regression loss function to 
accelerate the bounding box regression rate. The inte-
gration of these models into the YOLOv5m network 
significantly increased the efficiency of the network. 

The development of disease detection systems in 
cocoa trees is essential for different purposes. This re-
search can aid farmers in taking immediate action to 
stop the spread of diseases to healthy plants by detect-
ing diseases early on. This can safeguard the general 
well-being of cocoa plantations and drastically lower 
yield losses. Systems for detecting diseases produce 
data that can be used to analyze and comprehend dis-
ease trends, environmental factors that affect the prev-
alence of diseases, and the efficiency of disease man-
agement techniques. For long-term prevention and 
control of disease, this data-driven approach facilitates 
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informed decision-making. Detecting cocoa tree dis-
eases is primarily done to minimize negative effects on 
the environment and to enhance the welfare of com-
munities that grow cocoa, all the while ensuring the 
sustainability, profitability, and quality of cocoa farm-
ing operations.

Materials and Methods 

This section delineates the data and general work-
flow of techniques adopted for the application of deep 
learning methods in cocoa tree disease detection.   

Dataset analysis and preprocessing 

The cocoa tree disease detection dataset contains a to-
tal of 1,000 images. The datasets were annotated and 
preprocessed using the Roboflow software. They were 
then downloaded in YOLOv5 format resulting in a to-
tal of 2173 with four (4) classes namely: swollen shoot, 
stem borer, brown root rot, and healthy stem. The la-
beled image names are grouped into training, test, and 
validation sets with a 7 : 2 : 1 ratio as shown in Figure 1. 

Experimental setup and design 

The hardware environment configuration for this ex-
periment was carried out on a Lenovo laptop with an 
Intel Core i7 2.50 GHz processor and NVidia GeForce 
GTX 860M GPU, and the software environment was 
CUDA 11.0, CUDNN version 8, windows 11 operat-
ing systems, python 3.8.0, and visual studio. This study 
proposed the YOLOv5m network for cocoa tree dis-
ease detection. The performance of the YOLOv5m net-
work was improved by adding a Swin Transformer to 
the backbone network to acquire multi-scale features. 
By obtaining global information, the K-means++ algo-
rithm was added to modify the choice of initial clus-
tering locations, and Efficient Intersection over Union 

Loss (EIoU) was used as a bounding box regression 
loss function to speed up the bounding box regression 
rate, resulting in higher precision of the YOLOv5m 
network. Ablation experiments were performed to as-
certain the improvement of the network performance.

The YOLOv5 model 

A highly effective network structure in the single-stage 
object detection network is the YOLO series network 
(Wang et al. 2023). The model backbone acquires 
features of various sizes, assembles these attributes 
through the neck, and then generates these maps P3, 
P4, and P5, to detect small, medium, and large objects 
(Diwan et al. 2023). Four modules make up its net-
work architecture: input, backbone, neck, and head. 
To make this algorithm faster and more accurate, it 
incorporates some new ideas for improvement based 
on YOLOv4. Images are sent to the backbone for fea-
ture extraction after being processed through the input 
layer. YOLOv5’s structure is logically divided into four 
main sections: input, neck, backbone, and prediction. 

The input dataset is preprocessed in the input sec-
tion using methods like image scaling, responsive 
anchor box processes, and data augmentation. Both 
Focus and CSP structures are incorporated into the 
YOLOv5 backbone network. The Focus module’s pur-
pose is to segment the input image to increase network 
speed and increase the local receptive field range (Ba-
cea and Oniga 2023). 

The CSP1_X and CSP2_X are two distinct designs 
that are part of the CSP structure. These architectures 
improve the network’s capacity for learning, ensuring 
accuracy while cutting down on operations. The CSP 
allows the model to capture a richer set of features by 
dividing the original input into two different sections 
that are each subjected to convolution operations. The 
model can capture a richer set of features thanks to 
CSP, which divides the original input into two paral-
lel branches and subjects each to convolution opera-
tions. This backbone relies heavily on the CBL module, 

A                                                            B                                                                  C                                                      D

Fig. 1. Sample cocoa tree dataset: A – swollen shoot, B – stem borer, C – root rot, D – healthy stem
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which stands for Conv + BN + LeakyRelu. To guaran-
tee effective feature extraction and network prolifera-
tion, this module integrates a leaky rectified linear unit 
(LeakyRelu) activation function, a convolutional layer, 
and a batch normalization layer. To harmonize fea-
tures across distinct layers, the Neck section employs 
a unique feature pyramid network (FPN) + path ag-
gregation network (PAN) structure. PAN consolidates 
high and low features via up-and-down sampling op-
erations, while FPN layers transmit semantic features 
in a top-down manner. Finally, two crucial compo-
nents of object detection are covered in the Prediction 
segment: non-maximum suppression and bounding 
box loss. Following the delivery of the three feature 
maps to the prediction head, each pixel in the feature 
map is subjected to bounding box regression and con-
fidence calculation using the preset a priori box to de-
termine the object category, category confidence, and 
box coordinates. multidimensional arrays with data on 
width and height. Upon executing the non-maximum 
suppression (NMS) procedure and establishing the 
correlating thresholds to eliminate superfluous data 
from the array, the ultimate detection information can 
be generated.

With CSPDaknet53 as the backbone. The primary 
architecture consists of stacking multiple C3 and CBS 
(Conv + BatchNorm + SiLU) modules, followed by the 
connection of an SPPF module. The SPPF module im-
proves the backbone’s ability to express features, and 
the CBS module helps the C3 module with feature ex-
traction. SPPF uses the max pooling function before 
max pooling to avoid repeating SPP operations in SPP-
Net which turns to accelerate the module’s speed. The 
parameters of the YOLOv5 backbone are illustrated in 
Table 1. 

YOLOv5m architecture enhancement 

YOLOv5 comes in five different versions: YOLOv5x, 
YOLOv5l, YOLOv5m, YOLOv5s, and YOLOv5n. The 
smallest model in the YOLOv5 series is the YOLOv5s. 
“S” represents “small”, mobile or edge devices. They 
have limited processing power and are the ideal 
platforms for this model’s performance. Although 
YOLOv5s has the fastest detection speed, it is not very 
accurate. The YOLOv5 series also includes a medium-
sized model. “M” represents “medium”. YOLOv5m is 
appropriate for devices with specific computing capa-
bilities and offers a good balance between speed and 
accuracy. The YOLOv5x is the largest model in the 
YOLOv5 family. “X” represents extra-large. Although 
YOLOv5x has the slowest detection speed, it performs 
best in terms of accuracy and is ideal for tasks need-
ing a very high level of accuracy and for devices with 
strong computing powers (GPUs, for example). The 

Fig. 2. Structure of the YOLOv5 architecture

Table 1. Parameters of YOLOv5 backbone

Module Parameters Arguments

CBS 3520 [3,32,6,2,2]

CBS 18,560 [32,64,3,2]

C3 18,816 [64,64,1]

CBS 73,984 [64,128,3,2]

C3 115,712 [128,128,2]

CBS 295,424 [128,256,3,2]

C3 625,152 [256,256,3]

CBS 1,180,672 [256,512,3,2]

C3 1,182,720 [512,512,1]

SPPF 656,896 [512,512,5]
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YOLOv5n is an improved version of the YOLOv5 se-
ries designed for nanodevices like NVIDIA JETSON 
Nano. This version of the YOLOv5 series maintains 
speed while offering edge-detection accuracy. In sum-
mary, several YOLOv5 versions are tailored to meet 
varying demands for processing power and real-time 
performance. T﻿he primary factors to consider while 
selecting a suitable model are the device’s process-
ing capacity and the task’s accuracy needs. After suc-
cessfully training YOLOv5x, YOLOv5l, YOLOv5m, 
YOLOv5s, and YOLOv5n on the cocoa tree datasets, 
the YOLOv5m was maintained for improvements due 
to its outstanding performance over other variants. 

This research enhanced the YOLOv5m network 
structure specifically for cocoa tree disease detection. 
A Swin Transformer was integrated into the backbone 
network. Furthermore, the Efficient intersection over 
union (EIoU) Loss function was added to boost per-
formance. Finally, appropriate initial anchor box po-
sitions were determined by applying the K-means++ 
clustering algorithm to modify the choice of initial 
clustering locations.

K-means++ for anchor box optimization

Although K-means is used by the original YOLOv5 
to cluster anchor box positions, K-means has built-in 
drawbacks. Initially, K-means is a heuristic approach, 
so it does not guarantee convergence to a global op-
timum. Second, the choice of the starting center has 
a direct impact on the clustering result. K-means can 
easily result in local fusion or necessitate more itera-
tions because it randomized selections of sample points 
as cluster centers. To ensure the best anchor boxes for 
cocoa tree-related disease detection, the K-means++ 
algorithm was proposed to improve the initial clus-
tering center selection. K-means++ handles the target 
point sampling like a probability-based task, in con-
trast to K-means, which ensures the increase in speed 
of the algorithm convergence. Due to its stochastic 
setup phase, which lowers the possibility of poor con-
vergence and guarantees a more reliable and effective 
clustering process, K-means++ is superior to K-means. 
Using a weighted likelihood probabilistic model, the 
K-means++ algorithm selects a new data point at ran-
dom to serve as the new center. When each point is 
chosen, P(x), is computed in Equation (1) as: 

𝑃𝑃(𝑥𝑥) =
𝐷𝐷(𝑥𝑥)2
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Loss function optimization 

The GIoU loss function is utilized in standard YOLOv5 
configurations to quantify bounding box prediction in-
congruities. GIoU, however, has limitations that result 

in less-than-ideal training convergence, particularly 
when bounding boxes have different aspect ratios or 
are misaligned. When this happens, GIoU falls back to 
a simple intersection over union (IoU) metric, which is 
insufficient to accurately represent the actual amount 
of intersection between the bounding boxes. The Ef-
ficient Intersection over Union (EIoU) loss function 
was proposed to offer a steady gradient and is more 
adept at managing aspect ratio fluctuations and mis-
alignments. The EIoU loss function breaks down the 
aspect ratios of both the predicted and actual bound-
ing boxes, in contrast to GIoU, which has issues with 
bounding boxes that are misaligned or have drastically 
different aspect ratios. This allows for individual com-
putations of width and height and produces a more 
accurate and subtle depiction of the overlap between 
bounding boxes. The EIoU loss function is mathemati-
cally expressed as: 
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Equation 2 uses the intersection-to-union area 
ratio (IOU) to quantify the correlation between the 
ground truth and predicted bounding boxes. 

Coefficient a measures the Euclidean distance be-
tween the centerline of the accurately predicted and 
ground truth bounding boxes dc which serve as a mod-
ulatory weighting factor for the center distance loss. 
Similarly, b serves as a weighting coefficient for the 
dimensional loss terms and, dw + dh which represent 
the differences in height and width, respectively, be-
tween the minimally circumscribed bounding box and 
the predicted bounding box. EIOU improves regres-
sion accuracy and speeds up convergence for antici-
pated bounding boxes. This gets around GIOU’s built-
in limitations and guarantees stable learning across 
a range of object sizes and shapes.

The Swin Transformer 

To output multi-scale feature information, patches 
are continuously merged at each stage, starting with 
a smaller patch size and using feature maps with 
varying down sampling rates at different stages. Swin 
Transformer is more appropriate for a range of com-
puter vision tasks such as plant disease detection due 
to its hierarchical network structure for acquiring 
multi-scale features. These features enable the network 
to perform intensive object detection tasks more ef-
fectively. A pretrained model of the Swin T was used 
in the YOLOv5 backbone of the cocoa tree dataset. 
The initial learning rate Adam was set to 0.01 with 
0.0005 weight decay. The learning rate was then de-
creased to 0.00001 at the 20th epoch and 0.000001 at 
the 50th epoch, respectively. During the training ep-
ochs, the YOLOv5m + Swin-T achieves 89% precision 
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at the 50th epoch compared to YOLOv5m’s 0.8383% 
precision at the 50th epoch. This shows 0.6% signifi-
cant improvements of the Swin-T when added to the 
YOLOv5m backbone architecture. 

The first Swin Transformer block, which has a two-
layer MLP with GELU non-linearity and two two-
layer norm layers, was based on W-MSA, as seen in 
Figure 3. Each W-MSA module and MLP module was 
followed by a residual connection and a Layer Norm 
layer, respectively. The second Swin Transformer block 
was identical to the first one, with the exception that 
a SW-MSA block took the place of the W-MSA block.
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True Positives (TP) denote the number of targets 
that the model detected; False Positives (FP) indicate 
the number of targets that the model incorrectly de-
tected; and False Negatives (FN) indicate the number 
of targets that the model missed during detection. 
C denotes the number of disease target categories, 
n denotes the number of IoU thresholds, k is the IoU 
of P(k) is precision, and R(k) is Recall. mAP@0.5 refers 
to the average AP of all classes when IoU is set to 0.5. 

Results 

Three sets of comparative experiments were carried 
out in this study The first experiments compared the 
YOLOv5m model with other YOLOv5 variants such 
as YOLOv5n, YOLOv5s, YOLOv5l, and YOLOv5x. 
Both the task’s accuracy requirements and the device’s 
processing capabilities are important considerations 
for choosing an appropriate model. Based on our sys-
tem’s hardware configurations as stated in YOLOv5m 
architecture enhancement, the above variants of the 
YOLOv5 model were analyzed by training each variant 
with the cocoa tree disease dataset. Table 2 detailed the 
optimization techniques for each variant and the re-
sults obtained after training each variant at 50 epochs. 
Model name defines the name of the YOLOv5 variant. 
Size defines the image resolution, and params define 

Fig. 3. Swin Transformer block

Shifted Window-based Multi-head Self-Attention 
(SW-MSA), which forms a new image by shifting the 
initial one both vertically and horizontally, was intro-
duced by Swin Transformer. The Swin Transformer 
block is mathematically expressed in Equation 3 as: 
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Results and Discussion

Experimental evaluation criteria 

mAP50 was the experiment’s evaluation criterion in 
this paper. The average of all classification detection 
results’ AP50 values is known as mAP@50. When the 
IOU threshold is set at 0.5, the AP50 value denotes 
the closed region of the precision and recall curve. 

Table 2. Experimental results of YOLOv5 models

Model Epochs Precision Recall mAP_0.5 mAP_0.5:0.95

YOLOv5m 50 0.91 0.89 0.86 0.86

YOLOv5n 50 0.88 0.89 0.84 0.88

YOLOv5s 50 0.90 0.90 0.66 0.72

YOLOv5l 50 0.74 0.73 0.71 0.73

YOLOv5x 50 0.70 0.72 0.69 0.68
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the parameters corresponding to each model vari-
ant. Precision refers to the percentage of all detection 
results that are accurately detected. Recall is used to 
show the degree to which a positive input is used to 
make positive prediction. Epochs refer to a complete 
pass through the dataset. mAPval@0.5:0.95 represent 
the mean average precision at different IoU threshold 
from 0.5 to 0.95. mAPval@0.5 calculates the average 
precision of all images in each category, params define 
the parameters corresponding to each model variant.

The second experiment compared the perfor-
mance of each proposed method (Swin Transformer, 
K-means++, and EIoU) with the YOLOv5m model. 
Applying the Swin Transformer to the YOLOv5m 
network global information was obtained. The 
K-means++ modifies the choices of the initial cluster-
ing location, and the EIOU speeds up the bounding 
box regressions rate.  The above modification made 
to the YOLOv5m model resulted in a significant im-
provement in the model’s performance in terms of 
precision and recall. Sample results are presented in 
Table 3 and Figure 4, respectively. To ensure the valid-
ity of the test results, each set of comparative experi-
ments applied the same training set, test set, training 
strategy, and evaluation criteria. 

The trained results showed that YOLOv5m achie
ved the best prediction results of 91% against other 
models that achieved 85%, 90%, 74%, and 70%, respec-
tively. The YOLOv5n and YOLOv5s took a short time 
to reach 50 epochs with low performance. YOLOv5l 
and YOLOv5x also took multiple hours to reach 
50 epochs with low precision accuracy. The best 

precision was achieved by YOLOv5m in an average 
time. The above analysis determined the proposed 
method to increase YOLOv5m Precision and detection 
accuracy. Hence the study proposed a Swin Transform-
er to the YOLOv5m network to obtain the global infor-
mation. The K-means++ was also added to modify the 
choices of the initial clustering location, and the EIOU 
sped up the bounding box regressions rate. An analysis 
of the experimental results showed that there was signif-
icant improvement in the proposed model in detecting 
cocoa tree disease. The results in Table 2 influenced the 
choice of the model we chose to improve. From Table 3 
it can be seen that the YOLOv5m with Swin Trans-
former, K-means++, and EIoU achieved a significant 
improvement with an average increase of 5%.  

The performance of the upgraded model was com-
pared to YOLOv5m. To further evaluate the efficacy 
of our approach (the improved model), a comparison 
with comparable recent crop disease detection re-
search is essential. Using computer vision, the suggest-
ed model YOLOv5m (EIOU + K-means++ + Swin-T) 
was compared with the approach proposed by Couli-
baly et al. (2020), Rodriguez et al. (2021), and Kumi 
et al. (2022).  Coulibaly et al. (2020) proposed a way to 
extract features effectively to enhance better diagnosis 
of plant disease. Rodriguez et al. (2021) proposed ma-
chine-learning techniques for cocoa tree disease detec-
tion. Kumi et al. (2022) designed a mobile application 
with machine learning techniques integrated for cocoa 
pod-related disease detection. The results obtained by 
the proposed methods of these authors are tabulated in 
Table 5. The results illustrated in the table below show 

Table 3. Experimental results of improved YOLOv5m model

Method Epochs Precision Recall mAP_0.5 mAP_0.5:0.95

Improved YOLOv5m + (Swin-T, 
 K-means++, and EIoU)

50 0.96 0.94 0.92 0.93

YOLOv5m+ K-means++, 50 0.92 0.91 0.90 0.89

YOLOv5m + EIoU 50 0.94 0.91 0.92 0.92

YOLOv5m + Swin-T 50 0.95 0.90 0.90 0.91

Table 4. Comparative analysis results of the improved models at each epoch

Model
20 Epochs 30 Epochs 40 Epochs 50 Epochs

preci-
sion

recall mAP_0.5
preci-
sion

recall mAP_0.5
preci-
sion

recall mAP_0.5
preci-
sion

recall mAP_0.5

YOLOv5m + (Swin-T,  
K-means++, and EIoU)

0.58 0.56 0.55 0.64 0.63 0.65 0.88 0.89 0.87 0.96 0.94 0.92

YOLOv5m + Swin-T 0.54 0.53 0.51 0.75 0.74 0.74 0.79 0.77 0.78 0.89 0.84 0.85

YOLOv5m + K-means++ 0.54 0.52 0.50 0.68 0.66 0.66 0.79 0.78 0.79 0.86 0.84 0.84

YOLOv5m + EIoU 0.52 0.50 0.56 0.55 0.56 0.54 0.78 0.80 0.77 0.87 0.86 0.81

YOLOv5m 0.56 0.56 0.54 0.66 0.64 0.65 0.89 0.86 0.82 0.83 0.89 0.88
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that our method achieved higher precision than Cou-
libaly et al. (2020) Rodriguez et al. (2021), and Kumi 
et al. (2022).

Discussion 

The rapid technological development of the agricul-
tural industry has been aided by the industry’s adop-
tion of a wide range of new technological solutions 
in recent years. Although agriculture is expected to 
become the industry standard, the physical risks and 
hazards that exist in this sector are significant fac-
tors that could prevent these innovations from being 

widely adopted and implemented. The assessment of 
many issues in agriculture has been made possible in 
recent years by the integration of artificial intelligence 
techniques. Current research has focused on develop-
ing deep-learning techniques for image acquisition at 
various levels to address plant detection issues. Nu-
merous diseases, such as root rot, swollen shot, stem 
borer, and stem canker, impede the high production 
of cocoa trees. Early disease detection is crucial for 
a variety of management processes. As a result, diverse 
research on the application of detection methods for 
disease identification has been suggested. 

Kumi et al (2022), proposed a deep learning-based 
smartphone application for cocoa pod disease detec-
tion. Their proposed approach incorporates a mobile 

Authors Approach Description Dataset Size
Number  

of classes
Precision

Our method
YOLOv5m (EIOU + K-means++, + 

Swin-T)
cocoa tree disease detection 1,000 4 95.16

Coulibaly et al. (2020) (DWT + PCA + GLCM + CNN) cocoa tree disease detection 10,000 2 74%

Rodriguez et al. (2021) proposed CNN model cocoa pod disease detection N/A 3 75%

Kumi et al. (2022)
mobile application  
with ML techniques

cocoa pod disease detection N/A N/A 80%

Table 5.  Comparative analysis of experimental results with other studies

Fig. 4.  Sample test results
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application with machine learning techniques. It al-
lows cocoa farmers to snap a photo of the cocoa pod 
and submit it for diagnosis, which is done via a backend 
cloud service. Convolutional Neural Networks (CNN) 
are the foundation for automatic disease diagnosis and 
detection in image analysis and classification. 

Given that the average recall for a few of the mod-
els is suitable for practical use, they concluded that 
the experimental results are encouraging and should be 
taken into consideration, in particular, SSD Resnet50 
V1 FPN and SSD MobileNet V2 results. They also in-
tend to publish an expanded version of this work in 
the future, along with a detailed analysis of each ML 
framework’s performance on the dataset.

Rodriguez et al. (2021) used machine learning 
techniques to determine the diseases affecting cocoa 
trees (Theobroma cacao L.). The methodology uses 
machine learning with image processing and analysis 
techniques like the SVM (Support Vector Machine) 
algorithm, LBP (Local Binary Pattern), and HoG (His-
tograms of Oriented Gradient) for classification to de-
termine whether or not the cocoa tree is affected by 
disease. The results obtained indicate that the cocoa 
plant state can be predicted by applying SVM, Random 
Forest, and ANN with characteristic vectors extracted 
using the HOG and LBP extraction algorithms. As 
a result, expanding the dataset is recommended to im-
prove the accuracy of the results.

Conclusions 

This study proposed YOLOV5m for cocoa tree dis-
ease detection. By integrating Swin Transformer, 
K-means++, and EIOU strategies, the YOLOv5m 
demonstrated enhanced performance with the various 
methods compared to the original YOLOv5m while 
maintaining high detection speed and compactness. 
This study contributes a practical and efficient solution 
for cocoa tree-related disease detection. 

However, there remain some restrictions in our 
current research. First, the total number of related dis-
ease data obtained is still limited when compared to 
the number of cocoa tree-related diseases. In future re-
search, more cocoa tree-related diseases will be incor-
porated as a detection target to expand the models’ ca-
pabilities. In addition, while the improved YOLOv5m 
achieves a balance between precision and efficiency, 
using a more advanced network could potentially fur-
ther boost detection performance. All things consid-
ered, this work provides a strong baseline model for 
cocoa tree disease detection, and future research will 
concentrate on increasing category diversity, optimiz-
ing accuracy, and enhancing generalizability.

Despite the rapid advancements in object detec-
tion, plant disease detection remains a challenge Im-
plementation may be hampered by variables like tran-
sition costs, model generalization, dataset restrictions, 
and efficiency limitations. We will focus our future 
efforts on addressing these issues to enable wider im-
plementation of object detection algorithms in plant 
disease detection. The current efforts made by diverse 
research in plant disease detection will gradually close 
the gap between cutting-edge methods and real-world 
applications.
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