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REVIEW

use of chemical plant protection products by 2030. This 
goal addresses growing concerns about the long-term 
effects of pesticide overuse, which have been linked to 
environmental degradation, biodiversity loss, and neg-
ative health impacts on humans (Huded et al. 2023).

The gradual withdrawal of active substances in 
plant protection products from the market poses 
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Abstract 
Global agricultural losses due to pests and pathogens are substantial, particularly for wheat, 
maize, and potatoes. Addressing these challenges necessitates innovative approaches in 
plant protection, particularly through early detection methods. This article outlines re-
search areas concerning the application of spectral imaging technologies in selective crop 
protection processes. Recent technological advancements, driven by the development of 
high-resolution optical sensors and data analysis methods (Pena et al. 2013), have enabled 
early detection of weeds, plant diseases, and pests in the field. Spectral imaging technologies, 
particularly hyperspectral imaging, play a pivotal role in early disease detection by capturing 
detailed spectral data across a wide range of wavelengths. This technology enables the detec-
tion of subtle physiological changes in plants long before visible symptoms occur. Hyper-
spectral imaging has proven effective in identifying diseases such as Fusarium head blight 
in wheat, allowing for timely interventions and potentially reducing yield losses. The inte-
gration of hyperspectral imaging with remote sensing technologies, including unmanned 
aerial vehicles and ground-based sensors, as well as artificial intelligence represents a sig-
nificant advancement in precision agriculture. This multidisciplinary approach aims to en-
hance crop protection while minimizing environmental impacts. The article also explores 
the advantages and limitations of these technologies and strategies for reducing the reliance 
on chemical plant protection methods in agricultural production. It is underlined, that fu-
ture research should focus on optimizing these technologies, addressing cost barriers, and 
exploring UAV-based applications for precision spraying and monitoring.

Keywords: artificial intelligence (AI), early disease detection, precision agriculture, re-
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Introduction

The primary objective of the European Union’s 
“Farm to Fork” strategy is to ensure the availability of  
high-quality, sustainable food across Europe. This am-
bitious strategy, central to the European Green Deal, 
seeks to transform the European food system to ensure 
environmental and human health benefits. A critical 
target within this strategy is the 50% reduction of the 
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significant challenges for European farmers. As more 
substances are phased out, the range of available chem-
ical plant protection tools narrows, increasing the risk 
of yield losses due to pests and diseases. A potential 
solution lies in the adoption of precision plant protec-
tion technologies, which utilize advanced methods 
such as artificial intelligence (AI), remote sensing, and 
digital tools to optimize the use of pesticides. These 
technologies can target specific areas of a field, apply-
ing treatments only where necessary, thereby reducing 
the overall amount of chemicals used (Gebbers and 
Adamchuk 2010).

Excessive pesticide use not only leads to environ-
mental degradation but also contributes to the contam-
ination of food products, negatively affecting human 
health. Multiple studies have shown that long-term ex-
posure to pesticides, even in small quantities, can lead 
to chronic diseases such as cancer, reproductive dis-
orders, and neurodegenerative conditions (Mostafalou 
and Abdollahi 2017). Thus, reducing pesticide usage 
benefits producers, consumers, and the environment 
alike. Given these advantages, the development and 
implementation of precision plant protection technol-
ogies have become a key task for modern agriculture. 
Scientific research should focus on these innovations 
to ensure sustainable and effective plant protection in 
the future (Monteiro et al. 2021).

In recent years, agricultural digitalization has 
gained significant impact. One promising research 
area involves the integration of precision technologies 
with AI models and remote sensing tools, which of-
fer real-time monitoring and decision-making support 
for farmers. The Rural Development Program 2014–
2020 (PROW) was developed by the Ministry of Ag-
riculture and Rural Development in Poland. Based on 
European Union regulations, in particular, Regulation 
(EU) No. 1305/2013 of the European Parliament and 
Council, on December 17, 2013, in support of rural de-
velopment, the European Agricultural Fund for Rural 
Development (EAFRD) repealed Council Regulation 
(EC) No. 1698/2005. It also delegated and implement-
ed acts of the European Commission which provided 
a substantial opportunity to enhance agricultural in-
novation through the “Cooperation” measure. This 
initiative supported the formation of consortia in the 
form of Operational Groups, which brought together 
agricultural advisory services, research institutions, 
and farmers to collaborate on technological advance-
ments in agriculture (Bomberski 2020). In Poland, 
cooperation between advisory bodies and scientific 
institutions has led to the creation of 438 Operational 
Groups, with approximately 40 focusing on the digi-
talization of agriculture, a trend known as Agriculture 
4.0. These groups have facilitated the collaboration of 
over 1200 entities, driving the transfer of knowledge 

and innovative solutions into agricultural practices 
and advisory services (Bomberski 2023). Among these, 
the Teledis Group has made significant contributions 
to digitalization projects, including those discussed in 
this article.

Polish agriculture requires sustained financial inter-
ventions and focused research to support multi-actor 
collaboration, according to the European Commission 
recommendations. This multi-actor approach involves 
the participation of various stakeholders (farmers, re-
searchers, advisory bodies, and industry experts) in 
the development of new technologies. It increases the 
likelihood of successful innovation by fostering col-
laboration from the concept phase through research, 
testing, validation, and implementation. For Poland 
to enhance its agricultural competitiveness and profit-
ability, it is essential to introduce digital solutions and 
innovations into everyday agricultural practice. One 
of the first steps in this direction is the effective pro-
tection of crops, coupled with a reduction in chemical 
pesticide use through the application of digital preci-
sion technologies.

The current state of knowledge

The global scientific community has shown increasing 
interest in artificial intelligence (AI) and its applica-
tions across various sectors, including agriculture. Ac-
cording to the Scopus database, by September 2024, 
around 597,832 scientific articles had been published 
on the topic of AI. Specifically, in the context of plant 
science, 6,130 publications focused on the use of hy-
perspectral imaging for plants. When the keyword 
“disease” was included, 720 publications were found, 
with 90 focused on identifying wheat diseases. This in-
dicates the growing relevance of AI in solving complex 
challenges in modern agriculture.

The development of artificial neural networks 
(ANNs) since the 1950s has been a critical advance-
ment in this field. Battleday et al. (2021) highlight 
three key stages in the evolution of ANNs: early ex-
ploratory stages, the rise of machine learning in the 
late 20th century, and the current era of deep learn-
ing and cognitive systems. Cognitive systems are ca-
pable of understanding and responding to natural 
language, making them suitable for human-computer 
interaction in complex environments such as agricul-
tural decision-making (Goodfellow et al. 2016). Deep 
learning, an advanced subset of machine learning, al-
lows ANNs to process large datasets and solve intri-
cate problems such as image recognition, which has 
become invaluable in diagnosing plant diseases (Chen 
et al. 2020; Cravero et al. 2022).
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In the domain of plant protection, many studies 
have focused on identifying cereal diseases using mul-
tispectral and hyperspectral cameras or fluorescence 
visualization methods often combined with neural 
network architectures (Szechyńska-Hebda et al. 2015; 
Lowe et al. 2017; Lu et al. 2017; Dyda et al. 2019; Qiu 
et al. 2019; Singh et al. 2020; Wan et al. 2022; Wąsek 
et al. 2022). Hyperspectral imaging is capable of de-
tecting subtle physiological changes in plants before 
visible symptoms appear, allowing for early diagnosis 
and prevention (Mahlein et al. 2018). Among the most 
significant threats to global wheat production is Fusar-
ium head blight (FHB), caused primarily by Fusarium 
graminearum, however, other Fusarium-related dis-
eases also can impact final yield (Szechyńska-Hebda et 
al. 2011; Dyda et al. 2019; Bartosiak et al. 2021). The 
disease can lead to yield losses of up to 80%, making 
early detection crucial for mitigating their impact (Ma 
et al. 2021).

Artificial intelligence has emerged as an important 
tool in addressing these challenges, particularly in the 
optimization of plant protection strategies. However, 
the rapid development of AI technologies shortens the 
lifecycle of AI-related projects (Sajid 2023). Maintain-
ing these systems is becoming increasingly complex, 
as applications require continuous updates to data-
sets, model improvements, and technical support. 
This complexity can hinder the practical adoption of 
AI technologies in agriculture, particularly in regions 
with limited financial and technical resources. In Po-
land, the adoption of modern AI-based plant protec-
tion systems is still in its early stages, e.g., AI-based 
applications for detecting wheat and triticale diseases 
remain limited in scope, detecting only visible disease 
symptoms (Golka et al. 2020, 2024a, 2024b).

Simultaneously, major international companies 
such as Bosch, Bayer, and Agrifac are developing digi-
tal technologies for precision spraying. Bosch and Bay-
er have created sprayers equipped with cameras spaced 
every meter along the boom, designed to recognize 
weed species. Agrifac has introduced systems that use 
cameras to determine the precise doses of liquid ap-
plied to each nozzle, while Blue River Technology has 
developed a system to prevent liquid drift by control-
ling many nozzles individually (Zanin et al. 2022).

There is an increasing need for early disease de-
tection technologies. Research is ongoing to develop 
spectral imaging technologies that can identify plant 
diseases at earlier stages of development before symp-
toms are visible to the naked eye (Zhang and Kovacs 
2012; Ma et al. 2021). Although promising, most of 
these technologies are still in the laboratory phase, 
with only a few field applications. Their integration 
into practical agriculture, particularly in Poland, re-
mains a challenge.

Directions for research in digital 
crop protection technologies

Global agricultural losses due to pests and pathogens 
are substantial, yearly averaging 21.5% for wheat, 
22.5% for maize, and 17.2% for potatoes (Savary et al. 
2019). These losses not only affect farmers economi-
cally but also threaten global food security. As a result, 
plant protection research has increasingly focused on 
early detection methods that can stop the spread of 
diseases before they cause significant damage.
Spectral imaging technologies are among the most 
promising tools for early disease detection. These 
methods capture images across multiple wavelengths, 
revealing physiological changes in plants that are invis-
ible to the naked eye (Mahlein et al. 2018). Researchers 
have reported highly positive results from the appli-
cation of spectral imaging for plant disease detection. 
Hyperspectral imaging has proven effective in detect-
ing diseases like Fusarium head blight in wheat, which 
can devastate crops if left unchecked (Ma et al. 2021; 
Wan et al. 2022; Gao et al. 2023).

Detection begins with capturing detailed spectral 
images of crops, followed by preprocessing to cluster and 
analyze the data. Various imaging techniques are em-
ployed, including thermal, multispectral, fluorescence, 
hyperspectral, and visible light imaging. These images 
provide essential information for training neural net-
works, which can learn to recognize disease patterns 
at different stages of development (Singh et al. 2020). 
For example, hyperspectral and fluorescence imaging 
can detect chlorophylls breakdown or other pigment 
indicators before they become visible (Bauriegel et al. 
2011; Szechyńska-Hebda et al. 2015; Dyda et al. 2019; 
Poobalasubramanian et al. 2022; Szechyńska-Hebda 
et al. 2022; Jie et al. 2023). However, a fundamental un-
derstanding of plant physiology, photosynthesis, and 
biochemistry is crucial for effectively utilizing these 
imaging technologies. By leveraging basic knowledge 
of these physiological processes and the biochemi-
cal properties of plants, researchers can interpret the 
spectral data more accurately (Szechyńska-Hebda et 
al. 2011; Karpiński and Szechyńska-Hebda 2023). The 
physiological knowledge helps in assessing the plant’s 
responses to various stressors and diseases, providing 
insights that enhance the precision of early detection 
methods (Szechyńska-Hebda et al. 2011, 2015; Dyda 
et al. 2019; Galieni et al. 2021; Moustaka and Mous-
takas 2023). Furthermore, by understanding mecha-
nisms of plant reactions to stress, scientists can refine 
imaging techniques and develop more effective strate-
gies for plant protection. Furthermore, research into 
digital crop protection technologies benefits greatly 
from integrating insights from plant monitoring, 
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physiology, biochemistry, and genetics (Bartosiak 
et al. 2021; Karpiński and Szechyńska-Hebda 2023; 
Koshariya et al. 2023). Such integration allows for 
a more comprehensive evaluation of plant responses 
and improves the interpretation of imaging data. By 
starting with a solid grasp of how plants interact with 
their environment and respond to stress, researchers 
can advance the development of diagnostic tools and 
protective measures. This approach not only enhances 
the accuracy of disease detection but also supports the 
creation of more targeted and efficient plant protection 
strategies, ultimately contributing to sustainable agri-
cultural practices.

The future development of digital crop protection 
technologies requires a multi-disciplinary approach 
that combines advances in remote sensing, AI, and 
deep plant physiology. Ongoing research in this field 
is exploring ways to integrate these technologies into 
practical agricultural systems, enabling farmers to 
protect their crops more effectively while reducing the 
environmental impact of chemical treatments (Das-
gupta et al. 2020). The successful implementation of 
such systems could revolutionize plant protection and 
significantly contribute to the sustainability of modern 
agriculture.

Hyperspectral imaging technology

Standard digital photography captures images in 
three electromagnetic wavelength ranges (400 nm to 
700 nm), corresponding to the B (blue) G (green), and 
R (red) channels (RGB). This technique, while valu-
able, is limited in its diagnostic capabilities. Although, 
artificial neural networks (ANNs) can diagnose wheat 
diseases using standard RGB images, it is only possible 
when the disease is advanced and visible to the naked 
eye (Cooper et al. 2023). However, by the time visual 
symptoms are detectable, the damage may already be 
extensive, reducing the effectiveness of subsequent in-
terventions.

In contrast, hyperspectral imaging offers a much 
broader range of information. A hyperspectral camera 
records spectral reflectance over more than 100 nar-
row electromagnetic wavebands, ranging from 400 nm 
to 2,500 nm, covering both the visible and infrared 
spectra (VIS–NIR–SWIR). This enables the detection 
of subtle physiological changes in plants long before 
symptoms are visible to the human eye (Mahlein et al. 
2012, 2013). The ability to capture such fine detail al-
lows for earlier diagnosis, leading to more timely inter-
ventions and potentially reducing yield losses.

Each hyperspectral image recorded by the camera 
has a resolution of ~4 nm. This narrow slice of reflect-
ed light provides insights into details, such as chloro-
phyll breakdown or water stress. In the infrared spec-
trum, which spans wavelengths from about 700 nm to  

2,500 nm, the reflection and absorption of infrared 
light by plants reveal important physicochemical prop-
erties, such as water content, cell structure, and stress 
responses, making hyperspectral imaging a valuable 
tool in precision agriculture (Thenkabail et al. 2000).

The analysis of these spectral bands also allows for 
the differentiation between various plant stresses, such 
as biotic (pathogen or pest infestation) and abiotic 
(drought, nutrient deficiencies) factors (Behmann et 
al. 2015a, 2015b). This makes it particularly useful in 
precision plant protection, where early detection and 
accurate identification of the stress factors are critical 
for effective treatment.

Numerous models of hyperspectral cameras are 
currently available, each capable of capturing different 
ranges of spectral data. The technology can be custom-
ized to target specific wavebands of interest, depend-
ing on the crop type and the specific threats being 
monitored. However, the successful application of hy-
perspectral imaging in agriculture requires a thorough 
understanding of the spectral signatures of different 
stressors. For instance, spectral variations caused by 
Fusarium infection in wheat differ from those caused 
by water stress, and differentiating between such 
stressors requires a robust dataset of spectral patterns 
(Khanal et al. 2017).

A significant limitation of hyperspectral imaging 
technology is its costs. The price of hyperspectral cam-
eras remains a threshold for many small and medium-
sized farms, and their widespread adoption may re-
quire financial support or subsidies. Furthermore, the 
data complexity and volume generated by hyperspec-
tral imaging can be overwhelming. To mitigate this, 
spectral vegetation indices, such as the Normalized 
Difference Vegetation Index (NDVI), are often used to 
simplify data analysis and improve processing speed 
while maintaining diagnostic accuracy (Camps-Valls 
et al. 2021; Pasternak and Pawłuszek-Filipiak 2022).

Bauriegel et al. (2011) identified growth stages GS 
71–85 on the BBCH scale as the optimal period for 
detecting plant diseases in wheat using hyperspectral 
imaging (e.g., Fusarium head blight, a fungal disease 
that primarily affects the heads). On the other hand, 
hyperspectral reflectance and brightness measure-
ments, taken 37 days after Zymoseptoria tritici infec-
tion (Septoria tritici blotch) and 30 days after Phae-
osphaeria nodorum infection (Stagonospora nodorum 
blotch), provided precise assessments of disease dam-
ages in advanced stages of crop development (Zhe-
lezova et al. 2023). These specific timeframes were 
critical for accurately quantifying disease impact and 
providing information about targeted intervention 
strategies. In similar research, hyperspectral imaging 
was used to monitor the progression of yellow rust 
in wheat (Bohnenkamp et al. 2019), achieving effec-
tive disease detection by early May (BBCH 31). After 
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mid-May (BBCH 37–39), with favorable dew condi-
tions induced by warm days and cool nights, yellow 
rust had become the predominant disease affecting 
the crop, marking a stage too advanced for preventa-
tive intervention. These studies collectively underscore 
the necessity of aligning detection efforts with specific 
plant growth stages to optimize the efficacy of disease 
identification. The BBCH scale, a widely recognized 
system that employs decimal coding to denote plant 
developmental phases, provides a standardized frame-
work for monitoring disease progression in cultivated 
plants and weeds (Lancashire et al. 1991; Pena et al. 
2013). Implementing hyperspectral imaging at these 
critical growth stages enhances early disease detection 
and facilitates timely, targeted interventions, reinforc-
ing the method’s role in modern plant pathology and 
crop management aimed at preserving plant health 
and yield potential. 

Variants of digital technologies  
for selective plant protection

Digital technologies for selective plant protection have 
evolved rapidly in recent years, driven by advances in 
AI, machine learning, and remote sensing technolo-
gies. Current research has highlighted two primary 
approaches to field-based selective plant protection 
technologies:
1. Remote sensing using unmanned aerial vehicles 

(UAVs).
2. Proximal sensing from ground-based equipment.

Remote sensing via UAVs offers the advantage of 
covering large areas quickly and cost-effectively. UAVs 
equipped with hyperspectral or multispectral cameras 
can capture detailed images of crop fields, allowing for 
the early detection of diseases, pests, and nutrient defi-
ciencies (Zhang and Kovacs 2012; Nguyen et al. 2021). 
The ability to monitor large fields from above reduces 
labor costs and provides real-time data, which can be 
crucial for timely interventions (Hunt et al. 2010).

In contrast, proximal sensing, typically involving 
ground-based equipment such as tractors or spray-
ers fitted with cameras and sensors, provides higher- 
-resolution data but may be more time-consuming 
(Tona et al. 2018). Ground-based systems are often 
more precise because they operate closer to the plants, 
allowing for detailed analysis of individual plants or 
small groups (Qiu et al. 2019). Both remote and proxi-
mal sensing techniques are essential components of 
precision agriculture, where the goal is to maximize 
crop yields while minimizing inputs water, fertilizers, 
and pesticides (Roberts 2021).

A third variant involves the use of UAVs for spray-
ing crops, although this is currently limited by the 

European Union regulations that prohibit drone-based 
spraying. Nonetheless, UAVs offer several advantages 
over traditional ground-based sprayers. They can avoid 
damaging tall crops, prevent soil compaction caused 
by tractor wheels, and access areas that are difficult to 
reach, such as waterlogged fields. However, UAV op-
erations are highly dependent on weather conditions, 
which can limit their use during windy or rainy peri-
ods (Cieślik 2023).

Despite these regulatory hurdles, there is growing 
interest in the use of drones for precision spraying, and 
ongoing research in Poland aims to address these legis-
lative barriers. The integration of UAV-based spraying 
with AI-driven monitoring systems holds significant 
promise for future developments in precision agri-
culture, offering both environmental and economic 
benefits (Zhang and Kovacs 2012).

In the following sections, the potential of 
UAV-based technology for plantation monitoring us-
ing hyperspectral cameras will be explored. This vari-
ant is particularly conducive to research focused on 
the early detection of plant diseases, enabling more 
efficient and sustainable plant protection strategies. 
There are plans to further investigate this approach 
under the NCBR’s “Infostrateg VI” project no. INFOS-
TRTEG 6/0014/2023/A “Artificial Intelligence for the 
identification of undesirable phenomena and selective 
crop protection” (Akronim: AI4Crop).

Selective plant protection technology using 
artificial neural networks (ANN) and UAVs

The primary objective of the proposed AI4Crop tech-
nology is to develop and field-test a selective plant pro-
tection system that integrates UAVs with ANN for ear-
ly disease detection. Early detection of plant diseases is 
critical for minimizing damage and reducing the need 
for chemical treatments. By integration, the system 
aims to provide a more accurate and efficient means of 
monitoring and protecting crops. The key components 
of this system (Fig. 1) include:
•	 pattern database;
•	 monitoring system;
•	 artificial neural network (ANN) module;
•	 crop threat maps;
•	 upgraded field sprayer. 

Pattern database

The pattern database is the applying of the ANN’s abil-
ity to detect diseases early. It serves as a collection of 
training data for the ANN, enabling the differentia-
tion between biotic threats (e.g., pathogens, pests) and 
abiotic stresses (e.g., drought). The database includes 
spectral and RGB imaging of healthy and diseased 
crops, meticulously selected for their quality and 
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Fig 1. The goal of the AI4Crop project is to implement an innovative, individualized monitoring system that distinguishes crop re-
sponses to pathogens, pests, and drought. This system will utilize spectral imaging, coordinated by an Artificial Neural Network (ANN) 
to generate threat maps that categorize areas of the field into critical, endangered, and preventive zones. Eventually, an automated 
intelligent spraying system will be integrated with field sprayers. This system includes algorithms for selective spray control based on 
ortho-photomap data, as well as algorithms for positioning spray elements and determining their optimal trajectory

relevance to ANN training. This database must be con-
tinually updated and expanded as the ANN is refined 
and the variety of crops and diseases increases (Saleem 
et al. 2020; Garg et al. 2023).

The creation of a robust pattern database is a com-
plex task, as it requires the accurate analysis of hy-
perspectral data. A well-structured database allows 
the ANN to compare new data with stored patterns, 
identifying disease symptoms early, often before they 
are visible to the naked eye (Mahlein et al. 2013). The 
success of this system hinges on the quality of the da-
tabase, as the ANN’s accuracy in diagnosing plant dis-
eases directly correlates with the quality of the stored 
patterns.

Given the variety of crops and diseases, the data-
base must be scalable. A potential solution is Mon-
goDB, a popular NoSQL database management system 
known for its flexibility and scalability. MongoDB can 
store large datasets and handle the complexity of hy-
perspectral imaging data, making it well-suited for this 
application. Moreover, cloud-based storage solutions 

allow for continuous updating and expansion of the 
database, ensuring that the ANN can adapt to new 
threats as they arise (Chen et al. 2022).

Monitoring system

The monitoring system in this technology consists of 
a UAV equipped with a hyperspectral or multispectral 
camera. The UAV serves as a platform for high-reso-
lution monitoring, flying over fields to capture data 
on crop health. The ‘drones’ have become increasingly 
popular in agriculture due to their ability to cover large 
areas quickly and provide detailed data (Zhang and 
Kovacs 2012).

The multispectral or hyperspectral camera mount-
ed on the UAV is essential for detecting early disease 
symptoms. These cameras capture images in narrow 
spectral bands, allowing for the identification of sub-
tle changes in plant physiology, such as water stress or 
the early stages of a fungal infection (Zaka and Samat 
2024). The high resolution provided by these cameras 
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ensures that even small areas of infection can be de-
tected, allowing for targeted treatments rather than 
blanket applications of pesticides (Mahlein et al. 2018).

This early detection capability is crucial for preci-
sion agriculture, as it enables interventions that are 
both timely and localized. By identifying affected 
plants early, farmers can reduce the amount of chemi-
cal treatment needed, lowering costs, and minimizing 
environmental impact (Thenkabail et al. 2000).

ANN module

The neural network module is responsible for process-
ing the data collected by the UAV and diagnosing plant 
health issues. The ANN is trained using the pattern da-
tabase and is capable of identifying early disease symp-
toms that are invisible to the human eye. The early de-
tection allows for more precise interventions, reducing 
the need for widespread chemical treatments (Baratov 
and Valixanova 2023).

Convolutional neural networks (CNNs), a type of 
ANN particularly well-suited to image analysis, are 
expected to be the most effective for this application. 
CNNs can identify key features in images, such as 
color and texture changes associated with early disease 
symptoms (Qiu et al. 2019). The ANN can categorize 
plants into three states: healthy, diseased, or other (for 
ambiguous cases), allowing for precise mapping of dis-
ease hotspots in the field.

Advantages and disadvantages of selective 
plant protection technology  
using ANN and UAV

The implementation of selective plant protection tech-
nology offers numerous functional, social, economic, 
and environmental benefits. One of the key functional 
advantages is its ability to detect diseases at an early 
stage, limiting their spread and reducing overall dam-
age to crops. Additionally, the system’s integration with 
ANN and hyperspectral imaging allows for a level of 
diagnostic accuracy that surpasses traditional meth-
ods (Barbedo 2016). 

Functional Benefits:
•	 Detection of diseases at an early stage, allowing for 

timely intervention.
•	 Increased diagnostic accuracy compared to tradi-

tional methods.
•	 Comprehensive system integrating monitoring, 

diagnosis, and treatment.

Social Benefits:
•	 Improved food quality and safety by reducing 

chemical use.

•	 Alignment with global trends in sustainable agri-
culture and digitalization.

Economic Benefits:
•	 Reduction in chemical plant protection products 

by up to 30% (Jin et al. 2018).
•	 Lower costs of crop monitoring than traditional 

aerial or satellite methods.
•	 Prevention of yield losses through early interven-

tion.

Environmental Benefits:
•	 Decreased chemical use, reducing environmental 

impact.
•	 More sustainable agriculture by lowering pesticide 

runoff and soil degradation.

Conclusions

1. A review of the literature indicates a growing inter-
est in the digitalization of agriculture, particularly 
in the application of ANN and hyperspectral imag-
ing for plant protection.

2. Research and development over the past decade 
have focused on reducing chemical inputs, improv-
ing disease detection, and automating plant protec-
tion processes.

3. While significant progress has been made in disease 
detection using hyperspectral cameras and ANN, 
these technologies have yet to be widely adopted in 
field agriculture due to their complexity and cost.

4. The proposed AI4Crop system represents a sig-
nificant advancement in selective plant protection, 
offering early disease detection, precise interven-
tions, and integration with existing agricultural 
practices.

5. Continued support for multi-actor projects, such as 
those under the PROW 2014-2020, is essential for 
the widespread adoption of these technologies.
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