ORIGINAL ARTICLE
Direct interaction between micronutrients and bell pepper (Capsicum annum L.), to affect fitness of Myzus persicae (Sulzer)
Taiebeh Alizamani 1, A-F,   Jahanshir Shakarami 1, A,C,E-F  
,   Mozhgan Mardani-Talaee 1, A,C,E-F,   Arash Zibaee 2, E-F,   Jose Eduardo Serrão 3, C,E-F
 
More details
Hide details
1
Department of Plant Protection, Lorestan University, Lorestan, Iran
2
Department of Plant Protection, University of Guilan, Guilan, Iran
3
Department of General Biology, University Federal de Viçosa, Viçosa, Brazil
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Jahanshir Shakarami   

Department of Plant Protection, Lorestan University, Foorodgah, 681371733, Khorramabad, Iran
Submission date: 2020-02-22
Acceptance date: 2020-04-16
Online publication date: 2020-07-28
 
Journal of Plant Protection Research 2020;60(3):253–262
 
KEYWORDS
TOPICS
ABSTRACT
The green peach aphid, Myzus persicae (Sulzer), is a polyphagous and holocyclic aphid which significantly damages agricultural crops. In the current study, the effects of micronutrients on some secondary metabolites of bell pepper (Capsicum annum L.) leaves and their subsequent influence on the life table parameters of M. persicae were investigated under greenhouse conditions. The flavonoid content in bell pepper leaves significantly changed following micronutrient treatments in the wavelength of 270 nm while there were no significant differences in the wavelengths 300 and 330 nm. The highest anthocyanin content was recorded after Fe treatment (3.811 mg ⋅ ml–1) while the total phenolic content in the bell pepper leaves increased after Mn (541.2 mg ⋅ ml–1) treatment compared to Fe (254.5 mg ⋅ ml–1) and control (216.33 mg ⋅ ml–1), respectively. The highest values of intrinsic (r) and finite rates of population increase (λ) of M. persicae were gained with Zn (0.320 and 1.377 day–1, respectively) treatment although the highest and the lowest values of the mean generation time (T) were found with Fe and Zn (14.07 and 12.63 days, respectively) treatments, respectively. Our findings suggest that Mn, more than Zn micronutrients, decreased ecological fitness of green peach aphid and may help enhance the efficiency of pest control techniques.
ACKNOWLEDGEMENTS
This manuscript was extracted from a Ph.D. thesis and supported by Lorestan University.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (56)
1.
Akca I., Ayvaz T., Yazıcı E., Smith C.L., Chi H. 2015. Demography and population projection of Aphis fabae (Hemiptera: Aphididae): With additional comments on life table research criteria. Journal of Economic Entomology 108 (4): 1466–1478. DOI: 10.1093/jee/tov187.
 
2.
Alizamani T., Razmjou J., Naseri B., Hassanpour M., Asadi A., Kerr Ch. 2017. Effect of vermicompost on life history of Hippodamia variegata preying on Aphis gossypii Glover. Journal of the Entomological Research Society 19 (1): 51–60.
 
3.
Amtmann A., Troufflard S., Armengaud P. 2008. The effect of potassium nutrition on pest and disease resistance in plants. Physiologia Plantarum 133: 682–691. DOI: 10.1111/j.1399-3054.2008. 01075.
 
4.
Bala K., Sood A.K., Pathania V.S., Thakur S. 2018. Effect of plant nutrition in insect pest management: A review. Journal of Pharmacognosy and Phytochemistry 7 (4): 2737–2742.
 
5.
Bennett R.N., Wallsgrove R.M. 1994. Secondary metabolites in plant defence mechanisms. New Phytologist 127 (4): 617–633. DOI: https://doi.org/10.1111/j.1469....
 
6.
Bernards M.A., Bastrup-Spohr L. 2008. Phenylpropanoid metabolism induced by wounding and insect herbivory. p. 189–213. In: “Induced Plant Resistance to Herbivory” (A. Schaller, ed.). New York, Springer Publisher, USA.
 
7.
Bernays E.A., Chapman R.E. 1994. Host-plant selection by Phytophagous insects. p. 95–165. In: “Contemporary Topics in Entomology”. New York, Springer Publisher, USA, 305 pp.
 
8.
Burnell J.N. 1988. The biochemistry of manganese in plants. p. 125–137. In: “Manganese in Soils and Plants”. Part of the Developments in Plant and Soil Sciences book series. New York, Springer Publisher, USA.
 
9.
Cakmak I. 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science 168 (4): 521–530.
 
10.
Carlberg E., Kostandini G., Dankyi A. 2012. The Effects of Integrated Pest Management Techniques (IPM) Farmer Field Schools on Groundnut Productivity: Evidence from Ghana. Selected Paper prepared for presentation at the Agricultural & Applied Economics Association’s 2012 AAEA Annual Meeting, Seattle, Washington, 12–14 August 2012.
 
11.
Chi H., Liu H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica 24 (2): 225–240.
 
12.
Chi H. 2018. TWOSEX-MS Chart: A Computer Program for the Age-stage, Two Sex Life Table Analysis. Available on: http://140.120.197.173/Ecology...]. [Accessed: 12 June 2018].
 
13.
Coleman J.E. 1992. Zinc proteins–enzymes, storage proteins, transcription factors, and replication proteins. The Annual Review of Biochemistry 61: 897–946.
 
14.
Dehghani-Yakhdani H., Iranipour Sh., Mehrnejad M.R., Farshbaf-Pourabad R. 2019. The role of iron (Fe) in the population dynamics of pistachio psyllid, Agonoscena pistaciae (Hemiptera: Aphalaridae) in Pistacia orchards. European Journal of Entomology 116: 194–200.
 
15.
Dixon A.F.G. 1987. Cereal aphids as an applied problem. Agriculture Zoology Review 2: l–57.
 
16.
Edwards C.A., Arancon N.Q., Vasko-Bennett M., Askar A., Keeney G., Little B. 2009. Suppression of green peach aphid (Myzus persicae Sulzer.), citrus mealy bug (Planococcus citri Risso), and two spotted spider mite (Tetranychus urticae Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicomposts. Crop Protection 28: 1–14.
 
17.
Fragoyiannis D.A., Mckinlay R.G., D’mello J.P.E. 2001. Interactions of aphid herbivory and nitrogen availability on the total foliar glycoalkaloid content of potato plants. Journal of Chemical Ecology 27: 1749–1762.
 
18.
Francis F., Gerkens P., Harmel N., Mazzucchelli G., De Pauw E., Haubruge E. 2006. Proteomics in Myzus persicae: Effect of aphid host plant switch. Insect Biochemistry and Molecular Biology 36: 219–227.
 
19.
Gogi M.D., Arif M.J., Asif M., Zain-ul-Abdin Bashir M.H., Arshad M., Khan M.A., Abbas Q., Shahid M.K., Anwar A. 2012. Impact of nutrient management schedules on infestation of Bemisia tabaci on and yield of non-bt cotton (Gossypium hirsutum) under unsprayed condition. Pakistan Entomologist 34: 87–92.
 
20.
Goyal S., Lambert C., Cluzet S., Merillon J.M., Ramawat K.G. 2012. Secondary metabolites and plant defence. Progress in Biological Control 12: 109–138. DOI: https://doi.org/10.1007/978-94....
 
21.
Hansch R., Mendel R.R. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology 12 (3): 259–266. DOI: 10.1016/j.pbi.2009.05.006.
 
22.
Hartmann T. 2004. Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Review in Planta 219 (1): 1–4. DOI: 10.1007/s00425-004-1249-y.
 
23.
Henry M., Becher M.A., Osborne J.L., Kennedy P.J., Aupinel P., Bretagnolle V., Brun F., Grimm V., Horn J., Requier F. 2017. Predictive systems models can help elucidate bee declines driven by multiple combined stressors. Apidologie 48: 328–339. DOI: 10.1007/s13592-016-0476-0.
 
24.
Hesler L.S., Dashiell K.E. 2011. Antixenosis to the soybean aphid in soybean lines. The Open Entomology Journal 5 (1): 39–44. DOI: 10.2174/1874407901105010039.
 
25.
Hughes N.P., Williams R.J.P. 1988. An introduction to manganese biological chemistry. p. 7–19. In: “Manganese in Soils and Plant” (R.D. Graham, R.J. Hannam, N.C. Uren, eds.). Kluwer Academic Publishers, Dordrecht, The Netherlands.
 
26.
Iason G.R., Dicke M., Hartley S.E. 2012. The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge University, UK, 335 pp.
 
27.
Iqbal M., Aslam M., Ranjha A.M., Akhtar J. 2000. Salinity tolerance of rice as affected by Zn application. Pakistan Journal of Biological Sciences 3 (12): 2055–2057. DOI: 10.3923/pjbs.2000.2055.2057.
 
28.
Khan M.A., Abbas M.W., Gogi M.D. 2015. Impact of micro and macro-nutrient foliar fertilizer use on the population of wheat aphid, Diuraphis noxia (Hemiptera: Aphididae) and wheat yield. Academic Journal of Entomology 8: 05–11. DOI: 10.5829/idosi.aje.2015.8.1.91131.
 
29.
Khosa S.S., Younis A., Rayit A., Yasmeen S., Riaz A. 2011. Effect of foliar application of macro and micro nutrients on growth and flowering of Gerbera jamesonii L. American-Eurasian Journal of Agricultural and Environmental Sciences 11 (5): 736–757.
 
30.
Kim D.O., Chun O.K., Kim Y.J., Moon H.Y., Lee C.Y. 2003. Quantification of polyphenolics and their antioxidant capacity in fresh plums. Journal of Agricultural and Food Chemistry 51 (22): 509–6515. DOI: 10.1021/jf0343074.
 
31.
Lahijie M.F. 2012. Application of micronutrients FeSO4 and ZnSO4 on the growth and development of Gladiolus variety “Oscar”. International Journal of Agriculture and Crop Sciences 4 (11): 718–720.
 
32.
Leszczynski B., Warchol J., Niraz S. 1985. The influence of phenolic compourids on the preference of winter wheat cultivars by cereal aphids. Insect Science Applications 6: 157–158.
 
33.
Mardani-Talaee M., Nouri-Ganblani G., Razmjou J., Hassanpour M., Naseri B., Asgharzadeh A. 2016. Effects of chemical, organic and biofertilizers on some secondary metabolites in the leaves of bell pepper (Capsicum annuum) and their impact on life table parameters of Myzus persicae (Hemiptera: Aphididae). Journal of Economic Entomology 109 (3): 1231–1240. DOI: 10.1093/jee/tov389.
 
34.
Mardani-Talaee M., Razmjou J., Nouri-Ganbalani G., Hassanpour M., Naseri B. 2017. Impact of chemical, organic and bio-fertilizers application on bell pepper, Capsicum annuum L. and biological parameters of Myzus persicae (Sulzer) (Hem.: Aphididae). Neotropical Entomology 46 (5): 578–586. DOI: 10.1007/s13744-017-0494-2.
 
35.
Marschner H. 2002. Mineral Nutrition of Higher Plants. 2nd ed. Functions of Mineral Nutrients, Academic Press, USA, 889 pp.
 
36.
Marschner P. 2012. Marschner’s Mineral Nutrition of Higher Plants. Oxford, Elsevier, UK, 672 pp.
 
37.
Özgökçe M.S., Chi H., Atlıhan R., Kara H. 2018. Demography and population projection of Myzus persicae (Sulzer.) (Hemiptera: Aphididae) on five pepper (Capsicum annuum L.) cultivars. Phytoparasitica 46 (2): 153–167. DOI: 10.1007/s12600-018-0651-0.
 
38.
Razmjou J., Mohammadi M., Hassanpour M. 2011. Effect of vermicompost and cucumber cultivar on population growth attributes of the melon aphid (Hemiptera: Aphididae). Journal of Economic Entomology 104: 1379–1383.
 
39.
Romheld V., Kirkby E.A. 2010. Research on potassium in agriculture: Needs and prospects. Plant and Soil 335: 155–180. DOI: 10.1007/s11104-010-0520-1.
 
40.
Samraj D.A., David B.V. 1988. Life table studies on the spotted bollworm, Earias vittella (Fabricious) (Lepidoptera: Noctuidae) in cotton ecosystem. Journal of Bombay Natural History Society 85: 637–641.
 
41.
Saska P., Shuhrovec J., Lukas J., Chi H., Tuan Sh.J., Honek A. 2016. Treatment by glyphosate-based herbicide alters life history parameters of the rose-grain aphid Metopolophium dirhodum. Scientific Reports 6: 27801. DOI: 10.1038/srep27801.
 
42.
Schoonhoven L.M., van Loon J.J.A., Dicke M. 2005. Insect-Plant Biology (421). Oxford University, UK, 421 pp.
 
43.
Shah T.H. 2017. Plant nutrients and insect’s development. International Journal of Entomology Research 6: 54–57.
 
44.
Slikard K., Singleton V.L. 1977. Total phenol analysis; automation and comparison with manual methods. American Journal of Enology and Viticulture 28: 49–55.
 
45.
Smith C.M. 2005. Plant Resistance to Arthropods: Molecular and Conventional Approaches. Dordrecht, the Netherlands, Springer, 423 pp.
 
46.
Southwood R., Henderson P.A. 2000. Ecological Methods. 3th ed. Blackwell Science, USA, 592 pp.
 
47.
Stoyanova Z., Doncheva S. 2002. The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plant. Brazilian Journal of Plant Physiology 14 (2): 111–116. DOI: 10.1590/S1677-04202002000200005.
 
48.
Sulistyo A., Inayati A. 2016. Mechanisms of antixenosis, antibiosis, and tolerance of fourteen soybean genotypes in response to whiteflies (Bemisia tabaci). Biodiversitas 17: 447–453. DOI: 10.13057/biodiv/d170207.
 
49.
Tsai C.J., Harding S.A., Tschaplinski T.J., Lindroth R.L., Yuan Y.N. 2006. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytologist 172: 47–62. DOI: 10.1111/j.1469-8137.2006.01798. x.
 
50.
Vallee B.L., Falchuk K.H. 1993. The biochemical basis of zinc physiology. Physiological Reviews 73 (1): 79–118. DOI: 10.1152/physrev.1993.73.1.79.
 
51.
Villanueva R.T., Brewer M., Way M.O., Biles S., Sekula D. 2014. Sugarcane Aphid: A New Pest of Sorghum. Texas A & M Agrilife Extension, College Station, TX, USA.
 
52.
Wang N., Cui Y., Liu Y., Fan H., Du J., Huang Z. 2013. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Molecular Plant 6 (2): 503–513. DOI: 10.1093/mp/sss089.
 
53.
War A.R., Paulraj M.G., Ahmad T., Buhroo A.A., Hussain B., Lgnacimuthu S., Sharma H.Ch. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior 7 (10): 1306–1320. DOI: 10.4161/psb.21663.
 
54.
Wojtkowiak K., Stepien A., Waskiewicz A., Ambroziak B.C. 2016. Foliar application of micronutrients (Cu, Zn and Mn) and its effect on yield and selected macronutrients content in winter triticale grain. Polish Journal of Natural Sciences 31 (3): 331–343.
 
55.
Zarghami S., Allahyari H., Bagheri M.R., Saboori A. 2010. Effect of nitrogen fertilization on life table parameters and population growth of Brevicoryne brassicae. Bulletin of Insectology 63 (1): 39–43.
 
56.
Zayed B.A., Salem A.K.M., Sharkawy H.M.El. 2011. Effect of different micronutrient treatments on rice. (Oriza sativa L.) growth and yield under saline soil conditions. World Journal of Agricultural Sciences 7 (2): 179–184.
 
eISSN:1899-007X
ISSN:1427-4345