ORIGINAL ARTICLE
Evaluation of the existing meteorological stations for the agrometeorological protection of agriculture in Wielkopolska
 
More details
Hide details
1
Poznań University of Life Sciences Institute of Agricultural Engineering, Department of Plant Production Engineering Wojska Polskiego 28, 60-637 Poznań, Poland
CORRESPONDING AUTHOR
Zbigniew Czaczyk
Poznań University of Life Sciences Institute of Agricultural Engineering, Department of Plant Production Engineering Wojska Polskiego 28, 60-637 Poznań, Poland
 
Journal of Plant Protection Research 2012;52(2):290–297
TOPICS
ABSTRACT
modern consulting and the automatic Decision Support Systems (DSS) need reliable measurements of the agrometeorological elements in a digital and on-line form. For this purpose, properly equipped and correctly spaced agrometeorological station networks are necessary. When building the networks the existing meteorological infrastructure should be taken into consideration. For this to be possible, a professional inventory of information about the existing points of the agrometeorological elements is necessary. The collected information about stations found in the Wielkopolska Voivodeship and neighboring areas of up to 200 km from Poznań, has been presented in this paper. In the Wielkopolska Voivodeship, 179 stations located in 107 municipalities in all 35 counties have been found. There are no stations in other 119 of the municipalities. In 67 municipality areas, 98 stations were found in the 45 counties from the regions around the Wielkopolska Voivodeship. There are 51 stations located in 39 municipalities of counties bordering the Wielkopolska Voivodeship. No station was found in four of the 27 border counties. The collected information will be helpful for planning the agrometeorological monitoring network. The information we are able to provide is necessary for supporting those decision makers responsible for the management of agriculture in Wielkopolska.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (35)
1.
Czaczyk Z. 2010. Problemy z przydatnością automatycznych stacji meteorologicznych do wspomagania decyzji w uprawie roślin. Tech. Rol. Ogrodnicza Leśna 4: 11–13.
 
2.
Durło G.B., Kajewska J. 2009. Czynnik technologiczny w automatycznych stacjach meteorologicznych. Acta Agrophysica 13 (1): 49–66.
 
3.
Gillespie T.J., Duan R.-X. 1987. A comparison of Cylindrical and Flat Plate Sensors for Surface Wetness Duration. Agric. Forest Meteorol. 40: 61–70.
 
4.
Hartman J.R., Parisi L., Bautrais P. 1999. Effect of leaf wetness duration, temperature, and conidial inoculums dose on apple scab infections. Plant Dis. 83 (6): 531–534.
 
5.
Hayman P. 2010. Report of Expert Team on Communication of Agrometeorological Products and Services for Sustainable Agriculture. http://www.chaharmahalmet.ir/B..., 63 pp.
 
6.
Hoogenboom G. 2000. Contribution of agrometeorology to the simulation of crop production and its applications. Agric. Forest Meteorol. 103: 137–157.
 
7.
Igono M.O., G. Bjovedt H.T. Sanford-Crane 1992. Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate. Int. J. Biometeorol. 36: 77–87.
 
8.
Juszczak R., Leśny J., Olejnik J., Jakubiak B., Friesland H. 2005. Agrometeorologiczny system wspomagania decyzji w organizacji prac gospodarstw rolnych w Wielkopolsce – etap pierwszy tworzenia serwisu. Woda – Środowisko – Obszary Wiejskie. IMUZ Falenty 5, 2 (15): 157–173.
 
9.
Juszczak R., Leśny J., Olejnik J. 2010. Quality verification of Wielkopolska Internet Agrometeorological Information Service (WISIA) operation as well as suitability and forecast accuracy assessment. p. 123–140. In: Acta Agrophysica – Agrometeorology Research 185. Rozprawy i Monografie 2010 (6).Instytut Agrofizyki w Lublinie, 165 pp.
 
10.
Kessel G.J.T., Raatjes P., Haren R.J.F. 2006. Visualization of potato late blight protection levels in potato foliage and tubers. Ninth Workshop of an European Network for development of an Integrated Control Strategy of potato late blight, Tallin (Estonia), 19–23 October 2005. PPO Special Report No 11: 135–139.
 
11.
Kędziora A. 1994. Agrometeorologiczna i teledetekcyjna osłona rolnictwa. Raport końcowy z realizacji projektu badawczego Nr: 5 0004 91 01. [Final report from research project Nr: 5 0004 91 01]. 15 pp.
 
12.
Kuśmierek R. 2008. The usefulness of automatic weather station for meteorological cover in agriculture. Sci. Rev. Eng. Environ. Sci. 1/39: 26–34.
 
13.
Lacetera N., Bernabucci U., Ronchi B., Nardone A. 2003. Physiological and productive consequences of heat stress. The case of dairy ruminants. In: “Interactions Between Climate and Animal Production” (N. Lacetera, U. Bernabucci, H.H. Khalifa, B. Ronchi, A. Nardono, eds.). EAAP Technical Series No. 7. Wageningen Acad. Publish., 124 pp.
 
14.
Leśny J., Juszczak R., Olejnik J. 2004. Agrometeorologiczna osłona rolnictwa – tworzenie prognoz oraz ich możliwości aplikacyjne w praktyce rolniczej. Rocz. AR w Poznaniu 25: 295–304.
 
15.
Leśny J., Juszczak R., Ratajkiewicz H., Chojnacki B., Urbaniak M., Olejnik J. 2007. Możliwości wspomagania podejmowania decyzji w rolnictwie z wykorzystaniem Wielkopolskiego Internetowego Systemu Informacji Agrometeorologicznej. Przegląd Naukowy, Inżynieria i Kształtowanie Środowiska XVI, 3 (37): 39–47.
 
16.
Łukasiewicz Sz. 2005. Temperature and air humidity in the Adam Mickiewicz University Botanical Garden on the basis of measurements at the meteorological station in Poznań Ławica. Physiographical Researches on Western Poland, Series A – Physical Geography 56: 83–92.
 
17.
Matese A., Gennaroa Di S.F., Zaldeia A., Genesioa L. 2009. A wireless sensor network for precision viticulture: The NAV system. Computers and Electronics in Agric. 69 (1): 51–58.
 
18.
Meinke H.W., Baethgen W., Carberry P.S., Donnatelli M., Hammer G.L., Selvaraju R., Stöckle C. 2001. Increasing profits and reducing risk in crop production using participatory systems simulation approaches. Agric. Syst. 70: 493–513.
 
19.
Mjelde J.W., Hill H., Griffiths J.F. 1998. A review of current evidence on climate forecasts and their economic effects in agriculture. Am. J. Agr. Econ. 80: 1089–1095.
 
20.
Mokeba M.L., Salt D.W., Lee B.E., Ford M.G. 1998. Computer modeling of the meteorological and spraying parameters that influence the aerial dispersion of agrochemical sprays. Int. J. Biometeorol. 41: 194–199.
 
21.
Nigam S.N., Nageswara Rao R.C., Wynne J.C. 1998. Effects of temperature and photoperiod on vegetative and reproductive growth of groundnut (Arachis hypogaea L.). J. Agric. Crop Sci. 181: 117–124.
 
22.
Nuyttens D., De Schampheleire M., Steurbaut W., Baetens K., Verboven P., Nicolaï B., Ramon H., Sonck B. 2006. Experimental study of factors influencing the risk of drift from field sprayers, Part 1: Meteorological conditions. Aspects Appl. Biol. 77: 321–330.
 
23.
Orlandini S., Marta A.D., Mancini M. 2006. The agroclimatic analysis at farm scale, Meteorol. Appl. (Supplement) 13: 87–93.
 
24.
Palmieri R., Tredway L., Niyogi D., Lackmann G.M. 2006. Development and evaluation of a forecasting system for fungal disease in turfgrass. Meteorol. Appl. 13: 405–416.
 
25.
Phipps P.M., Deck S.H., Walker D.R. 1997. Weather-based crop and disease advisories for peanuts in Virginia. Plant Dis. 81: 236–244.
 
26.
Ratajkiewicz H. 2009. Adaptation strategies of agriculture to climate change in terms of plant protection. In: “Climate Change and Agricultural in Poland – Impacts, Mitigations and Adaptation Measures” (J. Leśny, ed.). Acta Agrophysica 169: 137–150.
 
27.
Rijks D., Baradas M.W. 2000. The clients for agrometeorological information. Agr. Forest Meteorol. 103: 27–42.
 
28.
Sacchelli M., Samietz J., Siegfried W. 2008. Temperature accuracy of agricultural weather stations and consequences for phenology modelling. Acta Hortic. 803: 105–110.
 
29.
Sivertsen T.H. 2000. Weather information, site information and a system for dissemination of information on the Worldwide Web from a network of 52 automatic agrometeorological stations. Bull. OEPP/EPPO Bull. 30: 77–81.
 
30.
Spreer W., Hegele M., Czaczyk Z., Römheld V., Bangerth F.K., Müller J. 2007. Water consumption of greenhouse lychee trees under Partial Rootzone Drying. Agric. Eng. Int.: the CIGR e-journal. Manuscript LW 07 019. Vol. IX: 1-10.
 
31.
Stigter C.J., Kinama J., Zhang Y., Oluwasemire K.O., Zheng D., Al-amin N.K.N., Abdalla A.T. 2005. Agrometeorological services and information for decision-making: some examples from Africa and China. J. Agric. Meteorol. (Japan) 60: 327–330.
 
32.
Suthers R.W., Maywald G.F. 1985. A computerized system for matching climates in ecology. Agric. Ecosyst. Environ. 13: 281–299.
 
33.
Sutton J.C., Gillespie T.J., Hildebrand P.D. 1984. Monitoring weather factors in relation to plant disease. Plant Dis. 67: 147–150.
 
34.
Sutton J.C., Gillespie T.J., James T.D.W. 1988. Electronic monitoring and use of microprocessors in the field. p. 99–113. In: “Experimental Techniques in Plant Disease Epidemiology” (J. Kranz, J. Rotem, eds). New York Springer, 229 pp.
 
35.
Szwejkowski Z., Dragańska E., Suchecki S. 2010. Meteorological protection of the Agricultural economy under conditions of climatic change. Acta Agrophysica, Agrometeorology Research 185, Scientific treatises, 2010(6), ISSN 1234-4125,164 pp.
 
eISSN:1899-007X
ISSN:1427-4345