ORIGINAL ARTICLE
Metazachlor residues in soil and rape seed
 
More details
Hide details
1
Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
2
Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
CORRESPONDING AUTHOR
Mariusz Kucharski
Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
Submission date: 2013-07-23
Acceptance date: 2014-01-24
 
Journal of Plant Protection Research 2014;54(1):74–77
KEYWORDS
TOPICS
ABSTRACT
The purpose of the work was to analyse metazachlor contamination of the soil and metazachlor contamination of rape seeds. Monitoring tests were carried out during the 2010–2012 time period, on winter and spring oilseed rape fields located in south-western Poland. Soil and seed samples were collected at harvest time. The determination of metazachlor residues was conducted using gas chromatography with electron capture detection (GC/ECD). Based on the analysis of a total of 59 soil samples and 59 rape seed samples, metazachlor residue was detected in 45% of the soil samples of winter oilseed rape and in 71% of the soil samples of spring oilseed rape. Metazachlor contamination of rape seed was detected in 29% of winter rape samples and in 53% of spring rape samples. The concentration of assayed residue did not exceed 0005–0.0102 mg/kg. There were significantly higher amounts of metazachlor residue determined for the soil and seed samples of spring oilseed rape. None of the analyzed samples of oilseed rape seed showed a residue content exceeding the Maximum Residue Level (MRL).
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (18)
1.
Allen R., Walker A. 1987. Influence of soil properties on the degradation rates of metamitron, metazachlor and metribuzin in soil. Pestic. Sci. 18 (2): 95–111.
 
2.
Directive 2009/128/EC of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Official Journal of the European Union, 24.11.2009, L 309: 71–86.
 
3.
Franek M. 2000. Ekonomiczne aspekty ograniczania zachwaszczenia w rzepaku ozimym. [Economic aspect of reducing weed infestation in winter oilseed rape]. Pam. Puł. 120: 117–125.
 
4.
Grzegorzak M., Szpyrka E., Słowik-Borowiec M., Kurdziel A., Matyaszek A., Rupar J. 2012. Wykorzystanie metody QuEChERS w analizie pozostałości środków ochrony roślin w miodzie. [Applicability of QuEChERS method in analysis of plant protection products residue in honey]. Prog. Plant Prot./Post. Ochr. Roślin 52 (1): 133–136.
 
5.
Kucharski M., Domaradzki K. 2009. Pozostałości herbicydów w wybranych roślinach uprawnych – badania z lat 2000– 2008. [Residues of herbicide active substances in crops – research from 2000–2008]. Fragm. Agron. 26 (4): 74–80.
 
6.
Kucharski M., Sadowski J. 2011. Behaviour of metazachlor applied with additives in soil – laboratory and field studies. J. Food Agric. Environ. 9 (3–4): 723–726.
 
7.
Lemańczyk G., Jankowski K., Sadowski C., Klepin J. 1997. Wpływ zróżnicowanego nawożenia azotowego i zaniechania zwalczania szkodników na zdrowotność rzepaku ozimego. [Effect of differentiated nitrogen fertilisation and desistance from pest control on the health status of rapeseed]. Rośliny Oleiste/Oilseed Crops 18 (2): 371–379.
 
8.
Łozowicka B., Jankowska M., Kaczyński P. 2012a. Pesticide residues in Brassica vegetables and exposure assessment of consumer. Food Control 25 (2): 561–575.
 
9.
Łozowicka B., Miciński J., Zwierzchowski G., Kowalski I.M., Szarek J. 2012b. Monitoring study of pesticide residues in cereals and foodstuff from Poland. Pol. J. Environ. Stud. 21 (6): 1703–1712.
 
10.
Murawa D., Warmiński K. 2004. Plonowanie rzepaku jarego w warunkach zróżnicowanej ochrony. Acta Sci. Pol., Agricultura 3 (2): 221–233.
 
11.
Murawa D., Warmiński K. 2005. Wpływ zróżnicowanej ochrony roślin na skład chemiczny nasion rzepaku jarego. [Effect of varied plant control on the chemical composition of spring rapeseed]. Acta Sci. Pol., Agricultura 4 (1): 77–87.
 
12.
Muśnicki C., Toboła P., Muśnicka B. 1997. Produkcyjność alternatywnych roślin oleistych w warunkach Wielkopolski oraz zmienność ich plonowania. [Productivity of alternative oilseed crops growing in Wielkopolska region and variability of their yielding]. Rośliny Oleiste/Oilseed Crops 18 (2): 269–278.
 
13.
Nowacka A., Gnusowski B., Raczkowski M. 2012. Bezpieczeństwo zdrowotne polskich płodów rolnych w 2010 roku związane z pozostałościami środków ochrony roślin. [Estimation of dietary exposure to pesticide residues in Polish crops in 2010]. Prog. Plant Prot./Post. Ochr. Roślin 52 (1): 141–145.
 
14.
Regulation (EC) No 396/2005 of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Official Journal of the European Union, 16.03.2005, L 70: 1–16.
 
15.
Rouchaud J., Metsue M., Van Himme M., Bulcke R., Gillet J., Vanparys L. 1992. Soil degradation of metazachlor in agronomic and vegetable crop fields. Weed Sci. 40 (1): 149–154.
 
16.
Sadowski J., Kucharski M. 2005. Skutki niewłaściwego, w tym celowego stosowania herbicydów. [Effects of improper use of herbicides including purposeful one]. Prog. Plant Prot./Post. Ochr. Roślin 45 (1): 429–434.
 
17.
Sadowski J., Kucharski M. 2006. Herbicide residues of water in the water-collecting area of Widawa river. Pol. J. Environ. Stud. 15 (5d): 441–445.
 
18.
Walker A., Brown P.A. 1985. The relative persistence in soil of five acetanilide herbicides. Bull. Environ. Contam. Toxicol. 34 (1): 143–149.
 
eISSN:1899-007X
ISSN:1427-4345