ORIGINAL ARTICLE
Response of lemon balm (Melissa officinalis L.) accessions to Septoria leaf spot (Septoria melissae Desm.) in Hungary
Gergő Kovács 1, A-D  
,  
Géza Nagy 2, E
,  
 
 
More details
Hide details
1
Department of Medicinal and Aromatic Plants, Szent István University, Budapest, Hungary
2
National Food Chain Safety Office, Budapest, Hungary
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Gergő Kovács   

Department of Medicinal and Aromatic Plants, Szent István University, Budapest, Hungary
Online publication date: 2020-03-06
Submission date: 2019-05-07
Acceptance date: 2019-08-06
 
Journal of Plant Protection Research 2020;60(1):51–57
KEYWORDS
TOPICS
ABSTRACT
Septoria melissae Desm., the most important pathogen of lemon balm (Melissa officinalis) occurs each year on plantations. The fungus may cause serious yield losses in the absence of proper plant protection. Breeding resistant or tolerant cultivars could play an important role in plant protection of medicinal plants. However, only a few descriptions of tolerant varieties of lemon balm are available. The goal of this work was to evaluate the susceptibility of three accessions of M. officinalis against the pathogen of Septoria leaf spot under field conditions at Budapest-Soroksár (Hungary) in 2017–2018. Differences in susceptibility of the accessions were observed in both years. The accession of M. officinalis subsp. altissima proved to be the least susceptible to Septoria infection. The frequency of the infected leaves was only 5.1 and 28.1% in 2017 and 2018, respectively. However, the cultivar M. officinalis subsp. officinalis ‘Lorelei’ turned out to be the most susceptible to the pathogen with an average infection level of 26.1 and 66.6%, 1.3–6.1 times higher than that of the other accessions in each year, respectively. Development of disease tolerant M. officinalis cultivars may be an effective tool in the plant protection of lemon balm.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
FUNDING
This research was supported by the Higher Education Institutional Excellence Program (NKFIH-1159- -6/2019) awarded by the Ministry of Human Capacities within the framework of plant breeding and plant protection research of Szent István University.
 
REFERENCES (22)
1.
Bernáth J., Zámbori-Németh É. 2015. Up to date aspects of the plant protection in the Hungarian medicinal plant production. Növényvédelem 51 (1): 25–36. (in Hungarian with English abstract).
 
2.
Božović M., Garzoli S., Baldiserotto A., Romagnoli C., Pepi F., Cesa S., Vertuani S., Manfredini S., Ragno R. 2018. Melissa officinalis L. subsp. altissima (Sibth. & Sm.) Arcang. essential oil: Chemical composition and preliminary antimicrobial investigation of samples obtained at different harvesting periods and by fractionated extractions. Industrial Crops and Products 117: 317–321. DOI: https://doi.org/10.1016/j.indc....
 
3.
D‘Aulerio A.Z., Zambonelli A., Bianchi A., Albasini A. 1995. Micromorphological and chemical investigations into the effects of fungal diseases on Melissa officinalis L., Mentha pieprita L. and Salvia officinalis L. Journal of Phytopathology 143 (3): 179–183. DOI: https://doi.org/10.1111/j.1439....
 
4.
Dawson B.S.W., Franich R.A., Meder R. 1988. Essential oil of Melissa officinalis L. subsp. altissima (Sibthr. et Smith) Arcang. Flavour and Fragrance Journal 3 (4): 176–170. DOI: https://doi.org/10.1002/ffj.27....
 
5.
Engel R., Szabó K., Abrankó L., Rendes K., Füzy A., Takács T. 2016. Effect of arbuscular mycorrhizal fungi on the growth and the polyphenol profile of marjoram, lemon balm and marigold. Journal of Agricultural and Food Chemistry 64 (19): 3733–3742. DOI: https://pubs.acs.org/doi/10.10....
 
6.
Gartner H. 1971. Versuche zur Bekämpfung von Botrytis cinerea (GRAUSCHIMMEL) als traubenfäule. [Experiments to control Botrytis cinerea (grey rot) in the same way as grape rot]. Mitteilungen Klosterneuburg 21 (3): 183–189 (in German).
 
7.
Hoppe B. (ed). 2013. Handbuch Arznei- und Gewürzpflanzenanbau. Band 3: Krankheiten und Schädigungen an Arznei- und Gewürzpflanzen. Saluplanta e.V., Bernburg, DE, 416 pp. (in German).
 
8.
Jadczak P., Pizoń K. 2017. Identification of taxa of microscopic fungi occurring on selected herbal plants and possible methods of their elimination. World Scientific News 69: 1–17.
 
9.
Kovács G., Zámbori-Németh É., Nagy G. 2019. Susceptibility of lemon balm (Melissa officinalis L.) varieties to Septoria leaf spot (Septoria melissae Desm.) in Hungary. Acta Scientiarum Polonorum, Hortorum Cultus 18 (1): 47–56. DOI: https://doi.org/10.24326/asphc....
 
10.
Kowalska J., Remlein-Starosta D., Seidler-Łożykowska K., Bocianowski J. 2014. Can Trichoderma asperellum [t1] stimulate growth of lemon balm (Melissa officinalis l.) in different systems of cultivation? Acta Scientiarum Polonorum, Hortorum Cultus 13 (1): 91–102.
 
11.
Lynch J.P., Glynn E., Kildea S., Spink J. 2017. Yield and optimum fungicide dose rates for winter wheat (Triticum aestivum L.) varieties with contrasting ratings for resistance to Septoria tritici blotch. Field Crops Research 204: 89–100. DOI: https://doi.org/10.1016/j.fcr.....
 
12.
Meyers M. 2007. Lemon Balm: An Herb Society of America Guide. The Herb Society of America. Kirtland, Ohio, USA, 14 pp.
 
13.
Miceli A., Negro C., Tommasi L. 2006. Essential oil of Melissa romana (Miller) grown in Southern Apulia (Italy). Journal of Essential Oil Research 18 (5): 473–475. DOI: https://doi.org/10.1080/104129....
 
14.
Nagy G. 2002. A szeptóriás betegség kártétele citromfűn. [Damage on lemon balm in consequence of Septoria infection]. Növényvédelem 38 (4): 185–187. (in Hungarian with English abstract).
 
15.
Ocskó Z., Erdős Gy., Molnár J. 2019. Növényvédő szerek, termésnövelő anyagok. Vol. I. Agrixen Kiadó, Budapest, Hungary, 789 pp. (in Hungarian).
 
16.
Patora J., Majda T., Góra J., Klimek B. 2003. Variability in the content and composition of essential oil from lemon balm (Melissa officinalis L.) cultivated in Poland. Acta Poloniae Pharmaceutic, Drug Research 60 (5): 395–400.
 
17.
Ramanauskiene K., Raudonis R., Majiene D. 2016. Rosmarinic acid and Melissa officinalis extracts differently affect glioblastoma cells. Oxidative Medicine and Cellular Longevity 2016, 9 pp. DOI: http://dx.doi.org/10.1155/2016....
 
18.
Russo M. 2017. Effect of shading on leaf yield, plant parameters, and essential oil content of lemon balm (Melissa officinalis L.). Journal of Applied Research on Medicinal and Aromatic Plants 7: 27–34. DOI: http://dx.doi.org/10.1016/j.ja....
 
19.
Schnitzler P., Schuhmacher A., Astani A., Reichling J. 2008. Melissa officinalis oil affects infectivity of enveloped herpesviruses. Phytomedicine 15 (9): 734–740. DOI: https://doi.org/10.1016/j.phym....
 
20.
Seidler-Łożykowska K., Bocianowski J., Król D. 2013. The evaluation of the variability of morphological and chemical traits of the selected lemon balm (Melissa officinalis L.) genotypes. Industrial Crops and Products 49: 515–520. DOI: https://doi.org/10.1016/j.indc....
 
21.
Vanev S.G., Sameva E.F., Bakalova G.G. 1997. Order Sphaeropsidales. Fungi Bulgaricae 3: 1–335.
 
22.
Wielgusz K., Seidler-Łożykowksa K. 2017. Fungi colonizing and damaging different parts of some medicinal plants. Herba Polonica 63 (2): 18–26. DOI: https://doi.org/10.1515/hepo-2....
 
eISSN:1899-007X
ISSN:1427-4345