REVIEW
Figure from article: Beet moth (<i>Scrobipalpa...
 
HIGHLIGHTS
  • Beet crown damage leads to the greatest losses in sugar yield
  • Damaged roots are usually unsuitable for long-term storage and processing
  • The problem is associated with climate change
  • Scrobipalpa ocellatella is now one of the most serious threats to sugar beet
KEYWORDS
TOPICS
ABSTRACT
Beet moth (Scrobipalpa ocellatella) is a major pest of sugar beet crops in Europe, North Africa and Asia. Since its first detection in Poland a few years ago S. ocellatella has spread rapidly, causing extensive damage and is now one of the most serious threats to sugar beet. This problem is linked to climate change, high pest fecundity, its polyvoltinism and initially almost latent feeding. Scrobipalpa ocellatella causes crop losses directly by feeding on plants and indirectly by creating favorable conditions for the growth of pathogens causing rot diseases. Heavy contamination of the beet crown with larval excrement creates ideal conditions for secondary fungal and bacterial infections. Sugar beets with severe root rot delivered to sugar plants are in many cases unsuitable for processing.
ACKNOWLEDGEMENTS
Special thanks are due to Zdzisław Klukowski and Maribo® for sharing some photos.
RESPONSIBLE EDITOR
Jacek Twardowski
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (160)
1.
Abbas A.O., Nassar F.S., Elshekh M.E. 2025. Climate change effects on agricultural pests: Aphids, Diabrotica balteata, and Asian corn borer in plant-pest interactions and pest dynamics in the context of achieving SDGs. Journal of Lifestyle and SDGs Review 5 (2): e04015. DOI: https://doi.org/10.47172/2965-....
 
2.
Abbasipour H., Basij M., Mahmoudvand M., Ashkan M. 2012. First report of the parasitoid wasp, Diadegma pusio (Hym.: Ichneumonidae) from Iran. Journal Entomology Society Iran, 32 (2): 127–128.
 
3.
Abdel R-ahman I.E. 2018. Biological and ecological studies on sugar – beet moth, Scrobipalpa ocellatella. International Journal of Chem Tech Research 11 (11): 274–277. DOI: http://dx.doi.org/10.20902/IJC....
 
4.
Abo-Saied Ahmed A.M.B. 1987. Studies on the insects of sugar-beet in Kafr El-Sheikh Governorate, Egypt. Ph.D. Thesis, Faculty of Agriculture, Tanta University, 160 pp.
 
5.
Adler C., Athanassiou C., Carvalho M.O., Emekci M., Gvozdenac S., Hamel D., Riudavets J., Stejskal V., Trdan S., Trematerra P. 2022. Changes in the distribution and pest risk of stored product insects in Europe due to global warming: Need for pan-European pest monitoring and improved food-safety. Journal of Stored Products Research 97: 101977. DOI: https://doi.org/10.1016/j.jspr....
 
6.
AFOFS. 2025. Austrian Federal Office for Food Safety. [Online] [Available from: https://psmregister.baes.gv.at...] [Accessed 25th April 2025].
 
7.
Ahmadi F., Moharramipour S., Mikani A. 2018. The effect of temperature and photoperiod on diapause induction in pupae of Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). Environmental Entomology 47 (5): 1314–1322. DOI: https://doi.org/10.1093/ee/nvy....
 
8.
Ahmed A.A., Zahar M., Gribkova V., Nikolaeva N., Dwijendra N.C.A., Suksatan W., Atiyah K.K., Jalil A.T., Aravindhan S. 2022. Effects of global warming on insect behaviour in agriculture. Journal of Water and Land Development 54 (VII–IX): 150–153. DOI: https://doi.org/10.24425/jwld.....
 
9.
Ali S., Khan S., Akhtar K., Ali S., Ullah I., Rajput A., Hussain S., Khan F., Ali A. 2014. The effect of population dynamics of insect pests on different varieties of sugar beet. Global Journal of Scientific Research 2 (3): 76–82.
 
10.
Al-Keridis L.A. 2016. Biology, ecology and control studies on sugar-beet mining moth, Scrobipalpa ocellatella. Der Pharma Chemica 8: 166–171.
 
11.
Allahvaisi S., Hassani M., Heidari B. 2021. Bioactivity of azadirachtin against Scrobipalpa ocellatella Boyd. (Lepidoptera: Gelechidae) on sugar beet. Journal of Plant Protection Research 61 (3): 280–289. DOI: https://doi.org/10.24425/jppr.....
 
12.
Alshehab E. 2024. Confirming the impact of climate change on biodiversity: results from a global survey. [Online] [Available from: https://ssrn.com/abstract=5020...] [Accsessed 23.05.2025].
 
13.
Altermatt F. 2009. Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B 277 (1685): 1281–1287. DOI: https://doi.org/10.1098/rspb.2....
 
14.
Amin A.H., Helmi A., El-Serwy S.A. 2008. Ecological studies on sugar beet insects at Kafr El-Sheikh Governorate, Egypt Journal Agriculture Research 86 (6): 2129–2139.
 
15.
Anonymous. 2020. Final Research Performance Report of Sugar Beet Seed Institute (SBSI) for 2018 Cropping Season. Agricultural Research, Education and Extension Organization (AREEO). Ministry of Jihad-e-Agriculture, Karaj, Iran, 121 pp. (in Persian).
 
16.
Arnaudov V., Raykov S., Davidova R., Hristov H., Vasilev V., Petkov P. 2012. Monitoring of pest populations - an important element of integrated pest management of field crops. Agricultural Science and Technology 4 (1): 77–80.
 
17.
Awad M., Moustafa M.A.M., Alfuhaid N.A., Amer A., Ahmed F.S. 2024. Toxicological, biological, and biochemical impacts of the egyptian lavender (Lavandula multifida L.) essential oil on two lepidopteran pests. Journal of Plant Protection Research 64 (2): 127–138. DOI: https://doi.org/10.24425/jppr.....
 
18.
Awadalla S.S., Bayoumy M.H., Abd Allah F.A., Hawila H.H. 2020. Effect of different sugar beet plantations on the sugar beet moth, Scrobipalpa ocellatella Boyd. and its insect parasitoids in Kafr El-Sheikh Governorate. Journal of Plant Protection and Pathology 11 (11): 567–569. DOI: https://doi.org/10.21608/jppp.....
 
19.
Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Whittaker J.B. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8 (1): 1–16. DOI: https://doi.org/10.1046/j.1365....
 
20.
Bartkowiak-Broda I., Adamczyk J., Arseniuk E., Bereś P. K., Korbas M., Mrówczyński M., Nowacki W., Piszczek J. 2020. Can plant breeding replace the loss of yield caused by not using pesticides? p. 12. In: “Abstract Book of 60th Scientific Session Institute of Plant Protection – National Research Institute”. 11–13 February 2020, Poznań, Poland. (in Polish).
 
21.
Bazazo K.G.I. 2005. Studies on insect predators and spiders in sugar beet fields at Kafr El-Sheikh region. M.Sc. Thesis, Tanta University, Egypt, 143 pp.
 
22.
Bazazo K.G.I. 2010. Studies on some insect pests and natural enemies in sugar beet fields at Kafr El-Sheikh Region. PH. D. Thesis, Tanta University, Egypt, 139 pp.
 
23.
Bazazo K.G., Hassan H. 2021. Diadegma aegyphiator Shaumer (Hymenoptera: Ichneumonidae): New record parasitoid on the rib miner, Scrobipalpa ocellatella Boyd. (Lepidoptera: Gelechiidae) in Egyptian sugar beet fields. Journal of Plant Protection and Pathology, Mansoura University 12 (3): 229–231. DOI: https://doi.org/10.21608/jppp.....
 
24.
Bazazo K.G.I., Ibrahim A.Sh.M. 2019. New record of Diadegma oranginator Aubert as a parasitoid of Scrobipalpa ocellatella Boyd. in Egyptian sugar beet fields. Egyptian Journal of Experimental Biology 15 (2): 289–294. DOI: https://doi.org/10.5455/egyseb....
 
25.
Bazazo K.G.I., Mashaal R.E.F. 2014. Pests attacking post-harvest sugar beet roots, and their adverse effects on sugar content. Journal Plant Protection and Pathology 5 (6): 673–678. DOI: https://doi.org/10.21608/jppp.....
 
26.
Bažok R. 2010. Suzbijanje štetnika u proizvodnji šećerne repe. Glasilo biljne zaštite. 10 (3): 153–165.
 
27.
Bažok R., Barić K., Čačija M., Drmić Z., Đermić E., Gotlin Čuljak T., Grubišić D., Ivić D., Kos T., Kristek A., Kristek S., Lemić D., Šćepanović M., Vončina D. 2015. Šećerna repa. Zaštita od štetnih organizama u sustavu integrirane biljne proizvodnje. Zagreb, 144 pp.
 
28.
Bažok R., Drmić Z., Čačija M., Mrganić M., Virić Gašparić, H. Lemić D. 2018. Moths of economic importance in the maize and sugar beet production. p. 65–83. In: “Moths, Pests of Potato, Maize and Sugar Beet” (F.K. Perveen ed.). IntechOpen, Rijeka, Croatia, 94 pp. DOI: https://doi.org/10.5772/intech....
 
29.
Bebber D.P. 2015. Range-expanding pests and pathogens in a warming world. Annual Review of Phytopathology 53: 335–356. DOI: 10.1146/annurev-phyto-080614-120207.
 
30.
Bengtsson B.Å. 2019. Anmärkningsvärda fynd av småfjärilar (Microlepidoptera) i Sverige 2018. Entomologisk Tidskrift, 140 (1): 1–18.
 
31.
Bereś P.K., Mrówczyński M., Piszczek J., Klukowski Z. 2020. Impact of climate change on pests of agricultural plants. p. 34. In: “Abstract Book of 60th Scientific Session Institute of Plant Protection – National Research Institute”. 11–13 February 2020, Poznań, Poland. (in Polish).
 
32.
Bergant K., Trdan S., Žnidarčič D., Črepinšek Z., Kajfež-Bogataj L. 2005. Impact of climate change on developmental dynamics of Thrips tabaci (Thysanoptera: Thripidae): Can it be quantified? Environmental Entomology 34 (4): 755–766. DOI: https://doi.org/10.1603/0046-2....
 
33.
Biancardi E., Mc Grath J.M., Panella L.W., Lewellen R.T., Stevanato P. 2010. Sugar Beet. p. 173–219. In: “Root and Tuber Crops. Handbook of Plant Breeding, vol 7” (J. Bradshaw, ed.). Springer, New York, NY. DOI: https://doi.org/10.1007/978-0-....
 
34.
Bittner V., Pavlů K., Holý K., Migdau J. 2019. Makadlovka řepná na cukrovce v roce 2018. Listy Cukrovarnicke a Reparske 135 (4): 140–145.
 
35.
BMEL. 2025. Das Bundesministerium für Ernährung und Landwirtschaft. [Online] [Available from: https://psm-zulassung.bvl.bund...] [Accessed 25th April 2025].
 
36.
Bohinc T., Batistič L., Trdan S. 2024. Seasonal dynamics of the brown marmorated stink bug (Halyomorpha halys [Stål]) in an urban landscape. Acta Agriculturae Scandinavica, section B, Soil & Plant Science 74 (1): 2396983. DOI: https://doi.org/10.1080/090647....
 
37.
Börjesson P., Tufvesson L. 2011. Agricultural crop-based biofuels – resource efficiency and environmental performance including direct land use changes. Journal of Cleaner Production 19 (2–3): 108–120. DOI: https://doi.org/10.1016/j.jcle....
 
38.
Bos H.L., Meesters K.P.H., Conijn S.G., Corre W.J., Patel M.K. 2012. Accounting for the constrained availability of land: a comparison of bio-based ethanol, polyethylene and PLA with regard to non-renewable energy use and land use. Biofuels, Bioproducts and Biorefining 6 (2): 146–158. DOI: https://doi.org/10.1002/bbb.13....
 
39.
Budziszewska M., Bereś P.K. 2024. The box tree moth Cydalima perspectalis: a review of biology, invasiveness, management practices and future perspectives of control strategy in Europe. Journal of Plant Protection Research 64 (4): 275–286, DOI: https://doi.org/10.24425/jppr.....
 
40.
Čamprag D., Jovanić M. 2005. Cutworms (Lepidoptera: Noctuidae) – Pests of Agricultural Crops. Poljoprivredni fakultet, Departman za zaštitu bilja i životne sredine, Novi Sad, Serbia, 222 pp. (in Serbian).
 
41.
Čamprag D.S., Sekulić R.R., Kereši T.B. 2006. Forecasting of major sugar beet pest occurrence in Serbia during the period 1961–2004. Zbornik Matice srpske za prirodne nauke/Proc. Nat. Sci, Matica Srpska Novi Sad 110: 187–194. DOI: https://doi.org/10.2298/ZMSPN0....
 
42.
CEFS Statistics 2021/22. European Association of Sugar Manufacturers. [Online] [Available from: https://cefs.org/wp-content/up...] [Accessed 25th February 2025].
 
43.
Charkaoui A., Jbilou R., Annaz H., Rharrabe K. 2024. Toxicity, antifeedant and repellent activities of five essential oils on adult Cassida vittata Vill. (Coleoptera: Chrysomelidae). Journal of Plant Protection Research 64 (4): 323–335. DOI: https://doi.org/10.24425/jppr.....
 
44.
Chen I.C., Hill J.K., Ohlemüller R., Roy D.B., Thomas C.D. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333 (6045): 1024–1026. DOI: https://doi.org/10.1126/scienc....
 
45.
Chod J., Dirlbek J., Novak I. Bernardova H., Kočmid V., Dirlbek K., Smrz J., Novotny J., Čača Z. 1984. Atlas Chorób i Szkodników Buraka (J. Benada, J. Šedivý, J. Špaček, eds.). Państwowe Wydawnictwo Rolne i Leśne, Warszawa, Polska, 264 pp. (in Polish).
 
46.
Commission Implementing Regulation (EU) 2018/783 of 29 May 2018 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance imidacloprid. [Online] [Available from: https://eur-lex.europa.eu/eli/...] [Accessed 22 nd April 2025].
 
47.
Commission Implementing Regulation (EU) 2020/18 of 10 January 2020 concerning the non-renewal of the approval of the active substance chlorpyrifos, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. [Online] [Available from: https://eur-lex.europa.eu/eli/...] [Accessed 22 nd April 2025].
 
48.
Dancewicz K., Gabryś B. 2008. Wpływ ekstraktów z czosnku Allium sativum, piołunu Artemisia absinthium i wrotyczu Tanaceum vulgare na zachowanie mszycy brzoskwiniowej Myzus persicae (Sulz.) podczas zasiedlenia roślin. Pestycydy 3–4: 93–99. (in Polish).
 
49.
Deutsch C.A., Tewksbury J.J., Tigchelaar M., Battisti D.S., Merrill S.C., Huey R.B., Naylor R.L. 2018. Increase in crop losses to insect pests in a warming climate. Science 361 (6405): 916–919. DOI: https://doi.org/10.1126/scienc....
 
50.
Dolenec B. 2012. Occurrence of the beet moth (Scrobipalpa ocellatella Boyd, Lepidoptera, Gelechiidae) and the turnip moth (Agrotis segetum Denis & Schiffermüller, Lepidoptera, Noctuidae) on the fodder beet field (Beta vulgaris L. subsp. vulgaris var. alba DC.) in the area of Škofja Loka. Graduation thesis. Ljubljana, 2012, 42 pp.
 
51.
Draycott A.P. 2006. Sugar Beet. Wiley-Blackwell, USA, 514 pp.
 
52.
Duraisamy R., Salelgn K., Berekete A.K. 2017. Production of beet sugar and bioethanol from sugar beet and it bagasse: a review. International Journal of Engineering Trends and Technology 43 (4): 222–233. DOI: https://doi.org/10.14445/22315....
 
53.
Dutka A. 2013. Essential oils based on volatile compounds have not been commonly used in plant protection. Progress in Plant Protection/Postępy w Ochronie Roślin 53 (1): 36–42 (in polish).
 
54.
Ekukole G. 2006. Some effects of an EC formulation of azadirachtin on important cotton pests in Senegal. Journal of Plant Protection Research 46 (4): 313–323.
 
55.
El Aalaoui M., Rammali S., Bencharki B., Sbaghi M. 2025. Efficacy of biorational insecticides and entomopathogenic fungi for controlling Cassida vittata Vill. (Coleoptera: Chrysomelidae) in sugar beet crops. Neotropical Entomology 54 (2). DOI: https://doi.org/10.1007/s13744....
 
56.
El Aalaoui M., Sbaghi M. 2024. Temperature-dependent development and population growth of the invasive pest Cassida vittata Vill. Sugar Beet Crops Crop Protection 184: 106845. DOI: https://doi.org/10.1016/j.crop....
 
57.
El-Dessouki S.A., EI-Awady S.M., El-Khawass K.A.M.H., Mesbah A.H., El-Dessouki W.A.A. 2014. Population fluctuation of some insect pests infesting sugar beet and the associated predatory insects at Kafr El-Sheikh Governorate. Annals of Agricultural Science 59 (1): 119–123. DOI: http://dx.doi.org/10.1016/j.ao....
 
58.
El-Gawad H.A.S. 2007. Field and laboratory evaluation of different controlling agents against the tortoise beetle, Cassida vittata Vill. and the rib miner Scrobipalpa ocellatella Boyd infesting beet in Egypt. Bulletin of the Entomological Society of Egypt, Economic Series 33: 103–121.
 
59.
El-Rawy A.M., Shalaby G.A. 2011. Reaction of some sugarbeet varieties to the infestation with some insects and final yield. Egyptian Journal of Agricultural Research 89 (4): 1383–1391. DOI: https://doi.org/10.21608/ejar.....
 
60.
El-Samahy M.F.M., Khafagy I.F., El-Ghobary A.M.A. 2015. Efficiency of silica nanoparticles, two bioinsecticides, peppermint extract and insecticide in controlling cotton leafworm, Spodoptera littoralis Boisd. and their effects on some associated natural enemies in sugar beet fields. Journal of Plant Protection and Pathology 6 (9): 1221–1230. DOI: https://doi.org/10.21608/jppp.....
 
61.
El-Serwy S.A. 2008. Pachycrepoidelis vindemmiae (Rondani), a new record parasitoid (Hymenoptera, Pteromalidae) on pupae of the beet leaf miner, Pegomya mixta Villeneuve (Diptera: Anthomyiidae), and the beet moth Scrobipalpa ocellatella (Boyd) (Lepidoptera: Gelechiidae). Egyptian Journal of Agricultural Research 86 (1): 43–63. DOI: https://doi.org/10.21608/ejar.....
 
62.
El-Sheikh M.F., Eldefrawy B.M., Mashaal R.E.F. 2022. The larval-pupal parasitoid, Enicospilus repentinus (Hol.) and resistant varieties as bio-agents for regulating populations of Scrobipalpa ocellatella Boyd. in the Egyptian sugar beet fields. Egyptian Academic Journal of Biological Sciences 14 (1): 55–62. DOI: https://doi.org/10.21608/eajbs....
 
63.
El-Sheikh M.F., Mashaal R.E.F., Hegazy F.H. 2023. Survey, population density and food preference of predatory formicid species on Scrobipalpa ocellatella Boyd. Life cycle stages under Egyptian sugar beet fields. Egyptian Academic Journal of Biological Sciences 16 (1): 179–188. DOI: https://doi.org/10.21608/eajbs....
 
64.
Emmet A.M., Langmaid, J.R. (eds.) 2002. The Moths and Butterflies of Great Britain and Ireland. Gelechiidae. Vol. 4, pt. 2. Harley Books, 277 pp.
 
65.
EPPO Standards. 1997. PP 2/13(1). Guideline on good plant protection practice: principles of good plant protection practice. Ornamental plants under protected cultivation. [Online] [Available from: https://gd.eppo.int › standard › pp2-013-1-en] [Accessed 25th February 2025].
 
66.
Farag A.A., El Kenawy A.H., Refaei E.A. 2023. Field evaluation of a commercial biopesticide in comparison with a conventional insecticide against Spodoptera littoralis and Scrobipalpa ocellatella sugar beet insect pests and their effect on the associated predators. Arab Journal of Plant Protection 41 (3): 266–271. DOI: https://doi.org/10.22268/AJPP-....
 
67.
Fergani Y.A., EL Sayed Y.A., Refaei E.A. 2022. Field evaluation of organophosphorus insecticides, chlorpyrifos and fungal bio-pesticides, Beauveria bassiana towards the sugar beet moth Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) and studying their effect on the population size of the associated arthropod predators in the Egyptian sugar beet fields. Journal of Plant Protection and Pathology, Mansoura University 13 (8): 191–194. DOI: https://doi.org/10.21608/jppp.....
 
68.
Fugate K.K., Campbell L.G. 2009. Postharvest deterioration of sugar beet. p. 92–94. In: “Compendium of Beet Diseases and Pests” (R.M. Harveson, L.E. Hanson, G.L. Hein, eds.). Part III. 2nd edition. St. Paul, MN: The American Phytopathological Society Publication, USA.
 
69.
Ganji Z., Moharramipour S. 2015. Seasonal changes in supercooling point and cold tolerance in field collected larvae of the beet moth, Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) in Karaj, Iran. Journal of Entomological Society of Iran 35 (2): 63–75.
 
70.
Garcia Gonzalez M.N., Björnsson L. 2022. Life cycle assessment of the production of beet sugar and its by-products. Journal of Cleaner Production 346: 131–211. DOI: https://doi.org/10.1016/j.jcle....
 
71.
Gartych M., Chowański S. Rosiński G., Słocińska M. 2014. Mechanizmy reakcji na stres chłodu u owadów. Postępy Biologii Komórki 41 (4): 617–636. (in Polish).
 
72.
Georgis R., Koppenhöfer A.M., Lacey L.A., Bélair G., Duncan L.W., Grewal P.S., Samish M., Tan L., Torr P., van Tol R.W. 2006. Successes and failures in the use of parasitic nematodes for pest control. Biological Control 38 (1): 103–123. DOI: https://doi.org/10.1016/j.bioc....
 
73.
Ghada M.R., Heba S.A. 2022. Effect of Bacillus aryabhattai B8W22 and two conventional insecticides on Scrobipalpa ocellatella (Lepidoptera: Gelechidae) larvae and their natural enemy populations. Egyptian Journal of Plant Protection Research Institute 5 (4): 432–439.
 
74.
Godoy da Silva S., Sant’Ana J., Mundstock Jahnke S., Ribeiro dos Santos C.D. 2023. Effects of essential oils from the Brazilian pepper tree, eucalyptus and citronella on brassica aphids Brevicoryne brassicae and Myzus persicae (Hemiptera: Aphididae) and their parasitoid Diaeretiella rapae (Hymenoptera: Braconidae). Journal of Plant Protection Research 63 (3): 286–296. DOI: https://doi.org/10.24425/jppr.....
 
75.
Górski R. 2005. Effectiveness of natural essential oils in monitoring of the occurrence of pea leaf miner (Liriomyza huidobrensis Blanchard) in gerbera crop. Journal of Plant Protection Research 45 (4): 287–291.
 
76.
Górski D., Kiniec A., Miziniak W., Piszczek J., Strażyński P., Tomalak M., Ulatowska A., Kierzek R., Nijak K., Gorzała G. 2023. Metodyka Integrowanej Produkcji Buraka. Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Warszawa, Polska, 58 pp. (in Polish).
 
77.
Harvey J.A., Heinen R., Gols R., Thakur M.P. 2020. Climate change- mediated temperature extremes and insects: From outbreaks to breakdowns. Global Change Biology 26 (12): 6685–6701. DOI: https://doi.org/10.1111/gcb.15....
 
78.
Hauer M., Hansen A.L., Manderyck B., Olsson Å., Raaijmakers E., Hanse B., Stockfisch N., Märländer B. 2017. Neonicotinoids in sugar beet cultivation in Central and Northern Europe: Efficacy and environmental impact of neonicotinoid seed treatments and alternative measures. Crop Protection 93: 132–142. DOI: https://doi.org/10.1016/j.crop....
 
79.
Hawila H.H.Z. 2021. Ecological and biological studies on the main insect pests infesting sugar beet plants and their associated natural enemies. PhD thesis. Arab Republic of Egypt, Mansoura University, 163 pp.
 
80.
Hegazy F.H. 2018. Role of Chrysoperla carnea (Stephens) release in the biocontrolling of Cassida vittata Vill. and Scrobipalpa ocellatella Boyd. larvae as well as enhancing the associated arthropod predator populations in comparison with conventional insecticides applications in sugar beet fields. Zagazig Journal of Agricultural Research 45 (6B): 2357–2365. DOI: https://doi.org/10.21608/zjar.....
 
81.
Holý K. 2022a. Monitoring škůdců zeleniny pomocí feromonových lapáků. Metodika pro praxi. Výzkumný ústav rostlinné výroby, Praha-Ruzyně, 27 pp.
 
82.
Holý K. 2022b. Výskyt škůdců cukrové řepy v letech 2018-2021. Listy Cukrovarnicke a Reparske 138 (7/8): 255–259.
 
83.
Holý K., Pavlů K. 2018. Motýli škodící na cukrové řepě. Listy Cukrovarnicke a Reparske 134 (3): 98–100.
 
84.
Holý K., Pavlů K. 2021.Výskyt makadlovky řepné v letech 2017-2020. Listy Cukrovarnicke a Reparske 137 (7/8): 256–259.
 
85.
Hossain R., Menzel W., Lachmann C., Varrelmann M. 2021. New insights into virus yellows distribution in Europe and effects of beet yellows virus, beet mild yellowing virus, and beet chlorosis virus on sugar beet yield following field. Inoculation Plant Pathology 70: 584–593. DOI: https://doi.org/10.1111/ppa.13....
 
86.
Ibrahim A.S.M. 2020. Field evaluation of methoxyfenozide and chromafenozide, ecdysone agonists against cotton leaf worm, sugar beet moth and preservation their predators. Egyptian Journal of Plant Protection Research Institute 3 (1): 290–299.
 
87.
Ingole S., Kakde A. 2013. Global warming and climate change: impact on biodiversity. International Journal of Scientific Research 2 (5): 288–290.
 
88.
Ismail M.S.M., Tag H.M., Rizk M.A. 2019. Acaricidal, ovicidal, and repellent effects of Tagetes patula leaf extract against Tetranychus urticae Koch (Acari: Tetranychidae). Journal of Plant Protection Research 59 (2): 151–159. DOI: https://doi.org/10.24425/jppr.....
 
89.
Isman M.B. 2000. Plant essential oils for pest and disease management. Crop Protection 19 (8–10): 603–608. DOI: https://doi.org/10.1016/S0261-....
 
90.
Jakubowska M., Dobosz R., Szabelska-Beręsewicz A., Zyprych-Walczak J., Kowalska J., Tratwal A. 2023. Effects of water-based extracts of peppermint (Mentha piperita L.) and French marigold (Tagetes patula L.) on the transformation of larvae and nymphs of two-spotted spider mite (Tetranychus urticae Koch). Journal of Plant Protection Research 63 (4): 474–480. DOI: https://doi.org/10.24425/jppr.....
 
91.
Kandil R.S., Fayed A.M., El-Dessouki A. 2023. Impact of chemical composition and molecular diversity of sugar beet cultivars on Scrobipalpa ocellatella Boyd (Lepidoptera: Gelechiidae) and Cassida vittata Vill (Coleoptera: Chrysomelidae). Journal of Plant Protection and Pathology 14 (11): 353–358.
 
92.
Khalifa A. 2018. Natural enemies of certain insect pests attacking sugar beet plants at Kafr El-Sheikh Governorate. Journal of Plant Protection Pathology 9 (8): 507–510. DOI: https://doi.org/10.21608/jppp.....
 
93.
Kheyri M., Naiim A., Fazeli M., Djavan-Moghaddam H., Eghtedar E. 1981. Some studies on Scrobipalpa ocellatella Boyd in Iran. Entomolgie et Phytopathologie Appliquees 48 (1): 1–39.
 
94.
Kilani-Morakchi S., Morakchi-Goudjil H., Sifi K. 2021. Azadirachtin-based insecticide: overview, risk assessments, and future directions. Frontiers in Agronomy 3: 676208. DOI: https://doi.org/10.3389/fagro.....
 
95.
King G.E., Viejo Montesinos J.L. 2011. Towards an understanding of the immature stages of the genus Scrobipalpa Janse, 1951 in Spain (Insecta: Lepidoptera: Gelechiidae). Boletín de la Real Sociedad Española de Historia Natural, Sección Biológica 105 (1–4): 83–90.
 
96.
Klukowski Z., Piszczek J. 2021. Distribution of damages in Poland caused by the sugar beet weevil (Asproparthenis punctiventris Germ. Coleoptera: Curculionidae). Journal of Plant Protection Research 61 (3): 311–313. DOI: https://doi.org 10.24425/jppr.2021.137946.
 
97.
Lacey L., Unruh T. 1998. Entomopathogenic nematodes for control of codling moth, Cydia pomonella (Lepidoptera: Tortricidae): Effect of nematode species, concentration, temperature, and humidity. Biological Control 13 (3): 190–197. DOI: https://doi.org/10.1006/bcon.1....
 
98.
Lehmann P., Tea A., Barton M., Battisti A., Eigenbrode S. D., Jepsen J.U., Kalinkat G., Neuvonen S., Niemela P., Terblanche J.S., Økland B., Björkman C. 2020. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment 18 (3): 141–150. DOI: https://doi.org/10.1002/fee.21....
 
99.
Lehmann P., Piiroinen S., Lyytinen A., Lindström L. 2021. Complex responses to climate change: temperature drives population dynamics of a pest insect. Ecological Entomology 45 (3): 571–580. DOI: https://doi.org/10.1111/een.12....
 
100.
Lichtenberger F. 2000. Lepidopterologische Notizen aus Oberösterreich – 5 Scrobipalpa ocellatella (BOYD 1858) in Oberösterreich (Insecta: Lepidoptera, Gelechiidae). Beitraege zur Naturkunde Oberoesterreichs 9: 5–8. [Online] [Available from: https://www.zobodat.at/pdf/LBB...] [Assecced 23.05.2025].
 
101.
Logan J.A., Powell J.A. 2001. Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist 47: 160–173.
 
102.
Lortkipanidze M., Gorgadze O., Kuchava M,. Burjanadze M., Gratiashvili N. 2014. Entomopathogenic nematode S. feltiae for biocontrol of beet moth Gnorimoschema ocellatella Boyd. (Lepidoptera: Gelechiidae). Georgian National Academy of Science 8 (2): 104–108.
 
103.
Ma C.S., Ma G., Pincebourde S. 2021. Survive a warming climate: Insects responses to extreme high temperatures. Annual Review of Entomology 66: 163–184. DOI: https://doi.org/10.1146/annure....
 
104.
Maceljski M. 2002. Poljoprivredna entomologija. 2nd ed. Zrinski Čakovec. Croatia. 519 pp.
 
105.
Mahmoudi J., Askarianzadeh A., Karimi J., Abbasipour H. 2013. The first report of two parasitoids braconids wasps on sugar beet moth, Scrobipalpa ocellatella Boyd. (Lep.: Gelechidae) from Khorasan-e-Razavi province. Journal of Sugar Beet 28 (2): 103–106. DOI: https://doi.org/10.22092/jsb.2....
 
106.
Mansour M.R., Ueno T., Mousa K. M. 2023. Efficacy of Bacillus thuringiensis Strain 407 versus synthetic pesticides in controlling sugar beet pests under open field conditions. Journal of The Faculty of Agriculture Kyushu University 68 (2): 143–150. DOI: https://doi.org/10.5109/679625....
 
107.
Marie S.S. 2004. Use of the egg parasitoid Trichogramma evanescens West. for controlling the rib miner, Scrobipalpa ocellatella Boyd. in sugar beet in Egypt. Egyptian Journal of Biological Pest Control 14 (2): 371–374.
 
108.
Mecenero S., Kirkman S.P. 2025. Life history and behavioural observations during the rearing of Dira clytus clytus (Linnaeus, 1764) (Insecta, Lepidoptera, Nymphalidae), with notes on implications for climate change adaptation. African Invertebrates 66 (1): 65–72. DOI: https://doi.org/10.3897/AfrInv....
 
109.
Mesbah I., Abou-Attia F., Metwally S., Bassyouni A., Shalaby G. 2004. Utilization of biological control agents for controlling some sugar beet insect pests at Kafr El-Sheikh region. Egyptian Journal of Biological Pest Control 14 (1): 195–199.
 
110.
Miller F. 1956. Zemědělská entomologie. ČSAV, Praha, 1056 pp.
 
111.
Minoranskii V.A. 1989. Protection of irrigated field cultures from pests. Moscow: VO Agrokhimizdat, 205 pp.
 
112.
Mordue A.J., Morgan E.D., Nisbet A.J. 2005. Azadirachtin, a natural product in insect control. p. 185–201. In: “Comprehensive Molecular Insect Science” (L.I. Gilbert, S.S. Gill, eds.). Elsevier, Amsterdam, 469 pp.
 
113.
Morgan E.D. 2009. Azadirachtin, a scientific gold mine. Bioorganic and Medicinal Chemistry 17 (12): 4096–4105. DOI: https://doi.org/10.1016/j.bmc.....
 
114.
MACR 2025. Ministry of Agriculture of the Czech Republic [Online] [Available from: https://mze.gov.cz/public/app/...] [Accessed 25th April 2025].
 
115.
MARD. 2025. Ministry of Agriculture and Rural Development. Wyszukiwarka środków ochrony roślin. [Online] [Available from: https://www.gov.pl/web/rolnict...] [Accessed 25th April 2025] (in Polish).
 
116.
NASBG. National Association of Sugar Beet Growers. 2023. Raport z występowania skośnika buraczaka na plantacjach buraka cukrowego w Polsce. [Online] [Available from: https://kzpbc.com.pl/files/fil...] [Accessed 03 March 2025] (in Polish).
 
117.
Neves Evaristo F. 1983. On the insect fauna of sugarbeet in Portugal. Boletim da Sociedade Portuguesa de Entomologia 2 (7): 77–94.
 
118.
Piszczek J., Klukowski Z. 2021. Occurrence of the beet moth (Scrobipalpa ocellatella) and sugar beet weevil (Asproparthensis punctiventis) on sugar beet crops in Poland. p. 43. In: Abstract Book of 61 Scientific Session Institute of Plant Protection – National Research Institute. 10–12 February 2021, Poznań, Poland (in Polish).
 
119.
Piszczek J., Klukowski Z., Kiniec A. 2020a. Impact of global warming on pests occurring and changes in the importance of sugar beet diseases. p. 162. In: Abstract Book of 60th Scientific Session Institute of Plant Protection – National Research Institute. 11–13 February 2020, Poznań, Poland (in Polish).
 
120.
Piszczek J., Tratwal A., Ulatowska A., Górski D., Jakubowska M., Trzciński P., Strażyński P. Miziniak W. 2020b. Poradnik Sygnalizatora Ochrony Buraka. Instytut Ochrony Roślin – Państwowy Instytut Badawczy, Poznań, Polska, 234 pp. (in Polish).
 
121.
Potyondi L., Kimmel J. 2003. Present situation in hungarian sugarbeet production. P. 849–855. In: Proceedings of 1st joint IIRB-ASSBT Congress, 26 February – 1 March 2003, San Antonio, USA.
 
122.
Prakash A., Rao J., Mukherjee AK., Berliner J., Pokhare S., Adak T., Munda S., Shashank P.R. 2014. Climate Change: Impact on Crop Pests. Applied Zoologists Research Association (AZRA), Odisha, India, 205 pp.
 
123.
Rashidov M.A., Khasanov A. 2003. Pests of sugar beet in Uzbekistan. Zashchita Rastenii 3: 29.
 
124.
Raza M., Khan M., Arshad M. Sagheer M. Sattar Z., Shafi J., Ehetisham Ul Haq M., Ali A., Usman Aslam H.M. Mushtaq A., Ishfaq I. Sabir Z., Sattar A. 2015. Impact of global warming on insects. Archives of Phytopathology and Plant Protection 48 (1): 84–94. DOI: https://doi.org/10.1080/032354....
 
125.
Razini A., Pakyari H., Arbab A. 2017. Estimation of sugar beet lines and cultivars infection to Scrobipalpa ocellatella Boyd. (Lepidoptera: Gelechiidae) larvae under field condition with natural infection. Journal of Sugar Beet 32 (2): 147–155. DOI: https://doi.org/10.22092/jsb.2....
 
126.
Razini A., Pakyari H., Arbab A., Ardeh M.J., Ardestani H. 2016. Study of infestation amount to beet moth “Scrobipalpa ocellatella”, among different sugar beet genotypes in the field. p. 603. In: Proceedings of 22nd Iranian Plant Protection Congress, 27–30 August 2016, Karaj, Iran.
 
127.
Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. [Online] [Available from: https://eurlex.europa.eu/eli/r...] [Accessed 22 nd April 2025].
 
128.
Renou M., Descoins Ch., Lallemand J.Y., Priesner E., Lettere M., Gallois M. 1980. L’acétoxy-1 dodecène 3E, composant principal de la phéromone sexuelle de la teigne de la betterave: Scrobipalpa ocellatella Boyd. (Lépidoptère Gelechiidae). Zeitschrift für Angewandte Entomologie 90: 275–289. DOI: https://doi.org/10.1111/j.1439....
 
129.
Robert P. 1976. Inhibitory action of chestnut-leaf extracts (Oastanea sativa Mill.) on oviposition and oogenesis of the sugar beet moth (Scrobipalpa ooellatella Boyd.; Lepidoptera, Gelechiidae). Symposia Biologica Hungarica 16: 223–227.
 
130.
Robert P., Blaisinger P. 1978. Role of non-host plant chemicals in the reproduction of an oligophagous insect: the sugar beet moth Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). Entomologia Experimentalis et Applicata 24 (3): 632–636. DOI: https://doi.org/10.1111/j.1570....
 
131.
Robinet C., Roques A. 2010. Direct impacts of recent climate warming on insect populations. Integrative Zoology 5 (2): 132–142. DOI: https://doi.org/10.1111/j.1749....
 
132.
Rosenkranz H., Vogel R., Greiner S., Rausch T. 2001. In wounded sugar beet (Beta vulgaris L.) tap-root, hexose accumulation correlates with the induction of a vascular invertase isoform. Journal of Experimental Botany 52 (365): 2381–2385. DOI: https://doi.org/10.1093/jexbot....
 
133.
Sabluk V.T., Fedorenko V.P., Gres Y.A. 2002. A forecast of the development and spread of pests in Ukraine. Sakharnaya Svekla 4: 19–21.
 
134.
Salazar-Ordóñez M., Pérez-Hernández P.P., Martín-Lozano J.M. 2013. Sugar beet for bioethanol production: An approach based on environmental agricultural outputs. Energy Policy 55: 662–668. DOI: https://doi.org/10.1016/j.enpo....
 
135.
Sekulić R., Kereši T. 2003. Da li treba hemijski suzbijati repinog moljca? Naučni Institut za Ratarstvo i Povrtlarstvo. Novi Sad 38: 299–306.
 
136.
Shahbandeh M. 2025. Sugar beet production worldwide from 1965 to 2023. Statista website. [Online] [Available from: https://www.statista.com/stati...] [Accessed 25th February 2025].
 
137.
Shalaby G.A.M. 2001. Ecological studies on some important sugar beet pests and natural enemies and their control. Ph.D. Thesis, Tanta University, Egypt, 141 pp.
 
138.
Shalaby G.A., El-Samahy M.F.M. 2010 Sugar beet plant stand in august cultivation as influenced by cotton leafworm infestation and role of arthropod predators in insect management. Journal Plant Protection and Pathology 1 (10): 807–813. DOI: https://doi.org/10.21608/jppp.....
 
139.
Sharma H.C. 2014. Climate change effects on insects: implications for crop protection and food security. Journal of Crop Improvement 28 (2): 229–259. DOI: https://doi.org/10.1080/154275....
 
140.
Skenderović I. 2021. Poljoprivredna entomologija. Tuzla: Printas. Bosne i Hercegovine, Sarajevo, 302 pp.
 
141.
Somme L. 1999. The physiology of cold hardiness in terrestrial arthropods. European Journal of Entomology 96: 1–10.
 
142.
Souguir S., Chaieb I., Cheikh Z.B., Laarif A. 2013. Insecticidal activities of essential oils from some cultivated aromatic plants against Spodoptera littoralis (Boisd). Journal of Plant Protection Research 53 (4): 388–391. DOI: https://doi.org/10.2478/jppr-2....
 
143.
Thalooth A.T., Tawfik M.M., Badre E.A., Mohamed M.H. 2019. Yield and quality response of some sugar beet (Beta vulgaris L.) varieties to humic acid and yeast application in newly reclaimed soil. Middle East Journal of Agriculture Research 8 (1): 56–65.
 
144.
Tome H.V.V., Martins J.C., Corrêa A.S., Galdino T.V.S., Picanço M.C., Guedes R.N.C. 2013. Azadirachtin avoidance by larvae and adult females of the tomato leaf miner Tuta absoluta. Crop Protection 46: 63–69. DOI: https://doi.org/10.1016/j.crop....
 
145.
Trdan S., Laznik Ž., Bohinc T. 2023. Native natural enemies of plant pests in Slovenia with an emphasis on species suitable for mass rearing. Journal of Insect Science 23 (5): 1–12. DOI: https://doi.org/10.1093/jisesa....
 
146.
Tribel S.A., Deryugin E.A. 1993. Biocenotic mechanisms of control of harmfulness. Sakharnaya svekla 3: 19–20.
 
147.
Walther G.R., Post E., Convey P. Menzel A., Parmesan C., Beebee T., Fromentin J.M., Guldberg O., Bairlein F. 2002. Ecological responses to recent climate change. Nature 416: 389–395. DOI: https://doi.org/10.1038/416389....
 
148.
Webster M. 1973. Manipulation of environment to facilitate use of nematodes in biocontrol of insects. Experimental Parasitology 33 (2): 197–206. DOI: https://doi.org/10.1016/0014-4....
 
149.
Valič N., Vučajnk F., Ferenčak B., Mlinarič M., Trdan S. 2005. Monitoring of sugarbeet moth (Scrobipalpa ocellatella Boyd, Lepidoptera, Gelechiidae) in Slovenia using pheromone traps p. 141. Lectures and papers presented at the 7th Slovenian Conference on Plant Protection, 8–10 March 2005, Zreče, Slovenia. Ljubljana, Plant Protection Society of Slovenia: 454–458.
 
150.
Van Putten R.J., Van Der Waal J.C., De Jong E., Rasrendra C.B., Heeres H.J., De Vries J.G. 2013. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical Reviews 113 (3): 1499–1597. DOI: https://doi.org/10.1021/cr3001....
 
151.
Vičar B. 2004. Pesni molj in pesni rilčkar. Sladkorna pesa 4: 7–26.
 
152.
Virić Gašparić H., Grubelic M., Dragovic Uzelac V., Bazok R., Cacija M., Drmic Z., Lemic D. 2020. Neonicotinoid residues in sugar beet plants and soil under different agro-climatic conditions. Agriculture 10 (10): 484. DOI: https://doi.org/10.3390/agricu....
 
153.
Virić Gašparić H., Lemic D., Drmic Z., Cacija M., Bazok R. 2021. The efficacy of seed treatments on major sugar beet pests: possible consequences of the recent neonicotinoid ban. Agronomy 11 (7): 1277. DOI: https://doi.org/10.3390/agrono....
 
154.
Vrabl S. 1992. Škodljivci poljščin. Kmečki glas, knjižica za pospeševanje kmetijstva. Ljubljana, 142 pp.
 
155.
Yadav S., Sarangi S., Shafi A.A., Pandey K.P., Thodusu M., Soni S., Parmar S. 2024. Climate change and insect ecology: impacts on pest populations and biodiversity. Journal of Advances in Microbiology 24 (12): 103–118. DOI: https://doi.org/10.9734/jamb/2....
 
156.
Zada H., Naheed H., Ahmad B., Saljoqi A.U.R., Salim M., Hassan E. 2018. Toxicity potential of different azadirachtin against Plutella xylostella (Lepidoptera: Plutellidae) and its natural enemy, Diadegma species. Journal of Agronomy and Agricultural Science 1: 003. DOI: https://doi.org/10.24966/AAS-8....
 
157.
Zamani S.M., Ghavamabad R.G., Kazerani F. 2023. Efficacy of indigenous isolates of entomopathogenic fungi, Beauveria bassiana against the box tree moth, Cydalima perspectalis, invasive pest in Iranian forests. Bulletin of Insectology 76 (1): 117–125.
 
158.
Zeng J., Liu Y., Zhang H., Liu J., Jiang Y., Wyckhuys K.A., Wu K. 2020. Global warming modifies long-distance migration of an agricultural insect pest. Journal of Pest Science 93 (2): 569–581. DOI: https://doi.org/10.1007/s10340....
 
159.
Zhang C.L., Xu D.C., Jiang X.C., Zhou Y., Cui J., Zhang C.X., Chen D.F., Fowler M.R., Elliott M.C., Scott N.W., Dewar A.M., Slater A. 2008. Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Annals of Applied Biology 152 (2):143–156. DOI: https://doi.org/10.1111/j.1744....
 
160.
Zhong B., Chaojun L., Weiquan Q. 2017. Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae). Florida Entomological Society 100 (2): 215–218. DOI: https://doi.org/10.1653/024.10....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top