• • There will be at least 9.8 billion people in the world by 2050, and they will need a steadily increasing amount of food.
  • • CRISPR/Cas9 gene editing technique in plant pathosystems requires knowledge of its mechanisms and natural systems.
  • • Global researchers developed the CRISPR/Cas9 microbial adaptive immune system.
The field of plant pathology has adopted targeted genome editing technology as one of its most crucial and effective genetic tools. Due to its simplicity, effectiveness, versatility, CRISPR together with CRISPR-associated proteins found in an adaptive immune system of prokaryotes have recently attracted the interest of the scientific world. Plant disease resistance must be genetically improved for sustainable agriculture. Plant biology and biotechnology have been transformed by genome editing, which makes it possible to perform precise and targeted genome modifications. Editing offers a fresh approach by genetically enhancing plant disease resistance and quickening resistance through breeding. It is simpler to plan and implement, has a greater success rate, is more adaptable and less expensive than other genome editing methods. Importantly CRISPR/Cas9 has recently surpassed plant science as well as plant disease. After years of research, scientists are currently modifying and rewriting genomes to create crop plants which are immune to particular pests and diseases. The main topics of this review are current developments in plant protection using CRISPR/Cas9 technology in model plants and commodities in response to viral, fungal, and bacterial infections, as well as potential applications and difficulties of numerous promising CRISPR/Cas9-adapted approaches.
We would like to express our gratitude to all the co-authors for their contribution and critical reviews from the anonymous reviewers.
Karlos Lisboa
The authors have declared that no conflict of interests exist.
Agudelo D., Carter S., Velimirovic M., Duringer A., Rivest J.F., Levesque S., Loehr J., Mouchiroud M., Cyr D., Waters P.J., Laplante M., Moineau S., Goulet A., Doyon Y. 2020. Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9. Genome Research 30: 107–117. DOI:
Ali Z., Abulfaraj A., Idris A., Ali S., Tashkandi M., Mahfouz M.M. 2015. CRISPR/Cas9-mediated viral interference in plants. Genome Biology 16: 238. DOI:
Ali Z., Ali S., Tashkandi M., Zaidi S.S.A., Mahfouz M.M. 2016. CRISPR/Cas9-Mediated immunity to geminiviruses: differential interference and evasion. Scientific Reports 6: 26912. DOI:
Anders C., Niewoehner O., Duerst A., Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569–73. DOI:
Arora L., Narula A. 2017. Gene editing and crop improvement using CRISPR-Cas9 system. Frontiers in Plant Science 8: 1932. DOI:
Baltes N.J., Hummel A.W., Konecna E., Cegan R., Bruns A.N., Bisaro D.M., Voytas D.F. 2015. Conferring resistance to geminiviruses with the CRISPR– Cas prokaryotic immune system. Nature Plants 1: 15145. DOI:
Blicharska D., Szućko-Kociuba I., Filip E., Skuza L. 2022. CRISPR/Cas as the intelligent immune system of bacteria and archea. Postępy Biochemii 68 (3): 235–245. DOI:
Bolotin A., Quinquis B., Sorokin A., Ehrlich S.D. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extra-chromosomal origin. Microbiology 151: 2551–2561. DOI: 28048-0.
Borrelli V.M.G., Brambilla V., Rogowsky P., Marocco A., Lanubile A. 2018. The enhancement of plant disease resistance using CRISPR/Cas9 technology. Frontiers in Plant Science 9: 1245.
Brouns S.J., Jore M.M., Lundgren M., Westra E.R., Slijkhuis R.J., Snijders A.P., Dickman M.J., Makarova K.S., Koonin E.V., van der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960–964. DOI:
Büttner D., He S.Y. 2009. Type III protein secretion in plant pathogenic bacteria. Plant Physiology 4: 1656–1664. DOI:
Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Sherman A., Arazi T., Gal-On A. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology 17: 1140–1153. DOI:
Chen L.Q., Qu X.Q., Hou B.H., Sosso D., Osorio S., Fernie A.R., Frommer W.B. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335: 207–211. DOI:
Chen W., Qian Y., Wu X., Sun Y., Wu X., Cheng X. 2014. Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral conserved nucleotide motif. Virus Genes 48: 494 – 501. DOI:
Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823. DOI:
Das A., Sharma N., Prasad M. 2019. CRISPR/Cas9: A novel weapon in the arsenal to combat plant diseases. Frontiers in Plant Science 9: 2008. DOI:
de Oliveira Luz A.C., da Silva J.M.A., Rezende A.M., de Barros M.P.S., Leal-Balbino T.C. 2019. Analysis of direct repeats and spacers of CRISPR/Cas systems type IF in Brazilian clinical strains of Pseudomonas aeruginosa. Molecular Genetics and Genomics 294 (5): 1095–1105. DOI:
de Toledo Thomazella D.P., Brail Q., Dahlbeck D., Staskawicz B.J. 2016. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. bioRxiv: 064824. DOI:
Dean R., Van Kan J.A., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13: 414–430. DOI:
Ding S.W., Voinnet O. 2007. Antiviral immunity directed by small RNAs. Cell 130: 413–426. DOI:
Doehlemann G., O¨kmen B., Zhu W., Sharon A. 2017. Plant pathogenic fungi. p. 703–726. In: “The Fungal Kingdom (J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James, N. Gow, eds.). Washington, DC: ASM Press.
Dong O.X., Ronald P.C. 2019. Genetic engineering for disease resistance in plants: recent progress and future perspectives. Plant Physiology 180: 26–38. DOI:
Dort E.N., Tanguay P., Hamelin R.C. 2020. CRISPR/Cas9 gene editing: an unexplored frontier for forest pathology. Frontiers in Plant Science 11: 1126. DOI:
Doudna J.A., Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346 (6213): 1258096. DOI:
Doyle E.L., Stoddard B.L., Voytas D.F., Bogdanove A.J. 2013. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA targeting proteins. Trends in Cell Biology 23: 390–398. DOI:
Dracatos P.M., Haghdoust R., Singh D., Fraser P. 2018. Exploring and exploiting the boundaries of host specificity using the cereal rust and mildew models. New Phytologist 218: 453–462. DOI:
Fang Y., Tyler B.M. 2016. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Molecular Plant Pathology 17: 127–139. DOI:
Feng Z., Zhang B., Ding W., Liu X., Yang D.L., Wei P., Cao F., Zhu S., Zhang F., Mao Y., Zhu J.K. 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research 23: 1229–1232. DOI:
Fisher M.C., Henk D.A., Briggs C.J., Brownstein J.S., Madoff L.C., McCraw S.L., Gurr S.J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484: 186–194. DOI:
Fondong V.N. 2013. Geminivirus protein structure and function. Molecular Plant Pathology 14: 635–649. DOI:
Foster A.J., Martin-Urdiroz M., Yan X., Wright H.S., Soanes D.M., Talbot N.J. 2018. CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus. Scientific Reports 8: 14355. DOI:
Faure G.S.A., Shmakov W.X., Yan W.X., Cheng D.R., Scott D.A., Peters J.E., Makarova K.S., Koonin E.V. 2019. CRISPR-Cas in mobile genetic elements: counter-defence and beyond. Nature Reviews Microbiology 17 (8):513–525. DOI:
Gardiner D.M., Kazan K. 2018. Selection is required for efficient Cas9-mediated genome editing in Fusarium graminearum. Fungal Biology 122: 131–137. DOI:
Garneau J.E., Dupuis M.E., Villion M., Romero D.A., Barrangou R., Boyaval P., Fremaux C., Horvath P., Magadán A.H., Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71. DOI:
Gilbertson R.L., Batuman O., Webster C.G., Adkins S. 2015. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review of Virology 2: 67–93. DOI:
Guo Z., Sun D., Kang S., Hou J., Gong L., Qin J., Guo L., Zhu L., Bai Y., Luo L., Zhang Y. 2019. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Insect Biochemistry and Molecular Biology 107: 31–38. DOI:
Haft D.H., Selengut J., Mongodin E.F., Nelson K.E. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Computer Biology 1: e60. DOI: pcbi.0010060.
Hsu P.D., Scott D.A., Weinstein J.A. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology 31 (9):827–832. DOI:
Hu Y., Zhang J., Jia H., Sosso D., Li T., Frommer W.B., Yang B., White F.F., Wang N., Jones J.B. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences of the United States of America 111 (4): E521–529. DOI:
Huck S., Bock J., Girardello J., Gauert M., Pul Ü. 2019. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology. RNA Biology 16: 397–403. DOI:
Idnurm A., Urquhart A.S., Vummadi D.R., Chang S., Van de Wouw A.P., López-Ruiz F.J. 2017. Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans. Fungal Biology and Biotechnology 4: 12. DOI:
Iqbal Z., Sattar M.N., Shafiq M. 2016. CRISPR/Cas9: A tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science 7: 475. DOI:
Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169: 5429–5433. DOI:
Jackson R.N., Golden S.M., Van-Erp P.B., Carter J., Westr E.R., Brouns S.J., van der Oost J., Terwilliger T.C., Read R.J., Wiedenheft B. 2014. Structural biology. Crystal structure of the CRISPR RNA- guided surveillance complex from Escherichia coli. Science 345: 1473–1479. DOI:
Jansen R., van Embden J.D.A., Gaastra W., Schouls L.M. 2002. Identification of a novel family of sequence repeats among prokaryotes. Omics: a Journal of Integrative Biology 6 (1): 23–33. DOI:
Jia H., Zhang Y., Orbovic´ V., Xu J., White F.F., Jones J.B., Wang N. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal 15: 817– 823. DOI:
Jiang W., Bikard D., Cox D., Zhang F., Marraffini L.A. 2013a. RNA-guided editing of bacterial genomes using CRISPRCas systems. Nature Biotechnology 31: 233–239. DOI:
Jiang W.Z., Zhou H.B., Bi H.H., Fromm M., Yang B., Weeks D.P. 2013b. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, Tobacco, Sorghum and rice. Nucleic Acids Research 41: e188. DOI:
Jinek M., Chylinski K., Fonfara I., Haue M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821. DOI:
Kanchiswamy C.N. 2016. DNA-free genome editing methods for targeted crop improvement. Plant Cell Reports 35: 1469–1474. DOI:
Karvelis T., Gasiunas G., Young J., Bigelyte G., Silanskas A., Cigan M., Siksnys V. 2015. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biology 16: 253. DOI:
Kerr A. 2016. Biological control of Crown Gall. Australas. Plant Pathology 45: 15–18. DOI:
Kim S., Kim D., Cho S.W., Kim J., Kim J.S. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research 24: 1012–1019. DOI:
Klompe S.E., Vo P.L.H., Halpin-Healy T.S., Sternberg S.H. 2019. Transposon-encoded CRISPR-Cas systems direct RNAguided DNA integration. Nature 571 (7764): 219–225. DOI:
Koonin E.V., Makarova K.S., Zhang F. 2017. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology 37: 67–78. DOI:
Kosicki M., Tomberg K., Bradley A. 2018. Repair of doublestrand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology 36: 765–771. DOI:
Langner T., Kamoun S., Belhaj K. 2018. CRISPR crops: plant genome editing toward disease resistance. Annual Review of Phytopathology 56: 479–512.
Lellis A.D., Kasschau K.D., Whitham S.A., Carrington J.C. 2002 Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF (iso) 4E during potyvirus infection. Current Biology 12: 1046–1051. DOI:
Li L., Liu, Chen B., Xu K., Zhang F., Li H., Huang Q., Xiao X., Zhang T., Hu J., Li F., Wu X. 2016. A genome-wide association study reveals new loci for resistance to clubroot disease in Brassica napus. Frontiers in Plant Science 7: 1483. DOI:
Li T., Liu B., Spalding M.H., Weeks D.P., Yang B. 2012 High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30: 390–392. DOI:
Liang Z., Zhang K., Chen K., Gao C. 2014. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41: 63–68. DOI:
Liu D., Chen X., Liu J., Ye J., Guo Z. 2012. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany 63: 3899–3911. DOI:
Liu D., Huang C., Guo J., Zhang P., Chen T., Wang Z., Zhao X. 2019. Development and characterization of a CRISPR/Cas9n based multiplex genome editing system for Bacillus subtilis. Biotechnology for Biofuels 12: 197. DOI:
Lyngkjær M., Newton A., Atzema J., Baker S. 2000. The barley mlo-gene: an important powdery mildew resistance source. Agronomie 20: 745–756. DOI:
Maikova A., Kreis V., Boutserin A., Severinov K., Soutourina O. 2019. Using an endogenous CRISPR-Cas system for genome editing in the human pathogen Clostridium difficile. Applied and Environmental Microbiology 85 (20): e01416–e01419. DOI:
Majeed U., Yaqoob U., Qazi H.A., Ahmad S., John R. 2018. CRISPR/Cas system as an emerging technology to enhance plant viral immunity. Physiological and Molecular Plant Pathology 103: 107–113. DOI:
Makarova K.S., Haft D.H., Barrangou R., Brouns S.J.J., Charpentier E., Horvath P., Moineau S., Mojica F.J., Wolf Y.I., Yakunin A.F., van der Oost J., Koonin E.V. 2011. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology 9: 467–477.
Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., Barrangou R., Brouns S.J., Charpentier E., Haft D.H., Horvath P., Moineau S., Mojica F.J., Terns R.M., Terns M.P., White M.F., Yakunin A.F., Garrett R.A., van der Oost J., Backofen R., Koonin E.V. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nature reviews. Microbiology 13: 722–736.
Makarova S., Khromov A., Spechenkova N.A., Taliansky M.E., Kalinina N.O. 2018. Application of the CRISPR/Cas system for generation of pathogen-resistant plants. Biochemistry. Biokhimiia 83: 1552–1562. DOI:
Makino S., Sugio A., White F., Bogdanove A.J. 2006. Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Molecular Plant Microbe Interaction 19: 240– 249. DOI:
Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. 2013. RNA-guided human genome engineering via Cas9. Science 339: 823–826. DOI:
Marraffini L.A., Sontheimer E.J. 2008. CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 322: 1843–1845. DOI:
Marraffini L.A., Sontheimer E.J. 2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature reviews Genetics 11: 181–190. DOI:
Mew T.W., Alvarez A.M., Leach J.E.., Swings J. 1993. Focus on bacterial blight of rice. Plant Disease 77: 5– 12. DOI:
Miah G., Rafii M.Y., Ismail M.R., Puteh A.B., Rahim H.A., Asfaliza R., Latif M.A. 2013. Blast resistance in rice: a review of conventional breeding to molecular approaches. Molecular Biology Reports 40: 2369– 2388. DOI:
Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta 1819: 86–96. DOI:
Mojica F.J., Díez-Villaseñor C., García-Martínez J., Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution 60: 174–182. DOI: 0046-3.
Mulepati S., Heroux A., Bailey S. 2014. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345: 1479–1484. DOI:
Mushtaq M., Ahmad Dar A., Skalicky M., Tyagi A., Bhagat N., Basu U., Bhat B.A., Zaid A., Ali S., Dar T.U., Rai G.K., Wani S.H., Habib-Ur-Rahman M., Hejnak V., Vachova P., Brestic M., Çığ A., Çığ F., Erman M., El Sabagh A. 2021. CRISPR-based genome editing tools: insights into technological breakthroughs and future challenges. Genes (Basel) 12 (6): 797. DOI:
Nejat N., Rookes J., Mantri N.L., Cahill D.M. 2017. Plant-pathogen interactions: toward development of next-generation disease-resistant plants. Critical Reviews in Biotechnology 37: 229–237. DOI:
Ou S.H. 1985. Rice diseases. p. 330–380. Commonwealth Mycological Institute, Kew, UK.
Peng A., Chen S., Lei T., Xu L., He Y., Wu L., Yao L., Zou X. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal 15: 1509–1519. DOI:
Pennisi E. 2013. The CRISPR craze. Science 341: 833–836. DOI:
Price A.A., Sampson T.R., Ratner H.K., Grakoui A., Weiss D.S. 2015. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proceedings of the National Academy of Sciences of the United States of America 112: 6164–6169. DOI:
Pyott D.E., Sheehan E., Molnar A. 2016. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Molecular Plant Pathology 17: 1276–1288. DOI:
Richter C., Chang J.T., Fineran P.C. 2012. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses 4 (10): 2291–2311. DOI: 10.3390/v4102291.
Roossinck M.J., Martin D.P., Roumagnac P. 2015. Plant virus metagenomics: advances in virus discovery. Phytopathology 105: 716–727. DOI:
Roy K.R., Smith J.D., Vonesch S.C., Lin G., Tu C.S., Lederer A.R., Chu A., Suresh S., Nguyen M., Horecka J., Tripathi A., Burnett W.T., Morgan M.A., Schulz J., Orsley K.M., Wei W., Aiyar R.S., Davis R.W., Bankaitis V.A., Haber J.E., Salit M.L., St Onge R.P., Steinmetz L.M. 2018. Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nature Biotechnology 36: 512–520. DOI:
Sampson T.R., Saroj S.D., Llewellyn A.C., Tzeng Y.L., Weiss D.S. 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497: 254–257. DOI:
Schloss P.D., Handelsman J. 2004. Status of the microbial census. Microbiology and Molecular Biology Reviews 68: 686–691. DOI:
Schuster M., Kahmann R. 2019. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genetics and Biology 130: 43–53. DOI:
Schwartz A.R., Potnis N., Timilsina S., Wilson M., Patané J., Martins J.J., Minsavage G.V., Dahlbeck D., Akhunova A., Almeida N., Vallad G.E., Barak J.D., White F.F., Miller S.A., Ritchie D., Goss E., Bart R.S., Setubal J.C., Jones J.B., Staskawicz B.J. 2015. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology 6: 535. DOI:
Mino T., Hatono T., Matsumoto N., Mori T., Mineta Y., Aoyama Y., Sera T. 2006. Inhibition of DNA replication of human papillomavirus by artificial zinc finger proteins. Journal of virology. 80 (11): 5405–5412. DOI:
Shah S.A., Erdmann S., Mojica F.J.M., Garrett R.A. 2013. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biology 10: 1–9. DOI:
Standage-Beier K., Brookhouser N., Balachandran P., Zhang Q., Brafman D.A., Wang X. 2019. RNA-guided recombinasecas9 fusion targets genomic DNA deletion and integration. The CRISPR Journal 2: 209–222. DOI:
Toruño T.Y., Stergiopoulos I., Coaker G. 2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual Review of Phytopathology 54: 419–441. DOI:
Wang F., Wang C., Liu P., Lei C., Hao W., Gao Y., Liu Y.G., Zhao K. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLOS ONE 11:e0154027. DOI:
Wang Q., Cobine P.A., Coleman J.J. 2018. Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genetics and Biology 117: 21–9. DOI:
Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32: 94–951. DOI:
Wenderoth M., Pinecker C., Voß B. 2017. Fischer R. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genetics and Biology 101: 55–60. DOI:
Wolter F., Schindele P., Puchta H. 2019. Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology 19 (1): 176. DOI:
Xie K., Yang Y. 2013. RNA-guided genome editing in plants using a CRISPR/Cas system. Molecular Plant 6: 1975–1983. DOI:
Yosef I., Goren M.G., Qimron U. 2012. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Research 40: 5569–5576. DOI:
Zaidi S.S., Mukhtar M.S., Mansoor S. 2018. Genome editing: targeting susceptibility genes for plant disease resistance. Trends in Biotechnology 36 (9): 898–906. DOI:
Zetsche B., Volz S.E., Zhang F. 2015. A Split-Cas9 architecture for inducible genome editing and transcription modulation. Nature Biotechnology 33: 139–142. DOI:
Zhang T., Zheng Q., Yi X., An H., Zhao Y., Ma S., Zhou G. 2018a. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnology Journal 16: 1415–1423. DOI:
Zhang Z., Ge X., Luo X., Wang P., Fan Q., Hu G., Xiao J., Li F., Wu J. 2018b. Simultaneous editing of two copies of GH 14-3-3D confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Frontiers in Plant Science 9: 842. DOI:
Zhang Z.T., Jiménez-Bonilla P., Seo S.O., Lu T., Jin Y.S., Blaschek H.P., Wang Y. 2018c. Bacterial genome editing with CRISPR-Cas9: taking Clostridium beijerinckii as an example. In: Braman JC, editor. Synthetic biology. Methods in molecular biology. New York: Humana Press. 1772: 297–325. DOI:
Zhou X., Liao H., Chern M., Yin J., Chen Y., Wang J., Zhu X., Chen Z., Yuan C., Zhao W., Wang J., Li W., He M., Ma B., Wang J., Qin P., Chen W., Wang Y., Liu J., Qian Y., Wang W., Wu X., Li P., Zhu L., Li S., Ronald P.C., Chen X. 2018. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences of the United States of America 115: 3174–3179. DOI: