ORIGINAL ARTICLE
Mixture toxicity of tebuconazole and fluopyram to honeybee (Apis mellifera L.): Effects on survival, feeding and antioxidant defenses
More details
Hide details
1
Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
2
Bee Research Department, Plant Protection Research Institute, Agricultural Research Center, Dokki, Egypt
3
Department of Apiculture Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-05-08
Acceptance date: 2024-10-29
Online publication date: 2025-07-01
Corresponding author
Ibrahim A. Mohamed
Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
HIGHLIGHTS
- A mixed tebuconazole + fluopyram possessed low acute toxicity to honeybees
- Tebuconazole + fluopyram reduced the survival rate of honey bees
- Tebuconazole + fluopyram affected honeybee food consumption and body weight
- Tebuconazole + fluopyram induced modulation in antioxidant enzymes of honeybees
KEYWORDS
TOPICS
ABSTRACT
Tebuconazole + fluopyram is a new binary mixture fungicide product that is widely used
to control many plant fungal pathogens and nematodes in several agricultural crops worldwide,
including Egypt. However, there is a lack of information about their toxicological
effects on honeybees (Apis mellifera L.). In the current study, the lethal and sub-lethal toxic
effects of mixture tebuconazole + fluopyram were examined on A. mellifera workers. Tebuconazole
+ fluopyram exhibited low acute toxicity to A. mellifera foragers (the 96-h LC50
value was 1.389 mg a.i. · ml–1). Sub-lethal effects of tebuconazole + fluopyram on survival,
body weight, food consumption and antioxidant defenses of A. mellifera were determined
by chronic oral exposure of A. mellifera workers to sugar syrup which contained two sublethal
concentrations of the fungicide, 0.139 mg · ml–1 (1/10 of 96 h LC50) and 0.278 mg · ml–1
(1/5 of 96 h LC50), along with clear sugar syrup as a control for 18 days. Honeybees exposed
to both sublethal concentrations of tebuconazole + fluopyram showed a significant decrease
in the bees’ survivability and dry body weight. Sugar syrup and pollen consumption by the
exposed A. mellifera were relatively less than by the controls. Tebuconazole + fluopyram
also induced disruptions in the enzymatic antioxidant and detoxification defense systems
in bees, indicating the presence of oxidative stress. Fungicide exposure elicited a significant
depletion in catalase and superoxide dismutase activities and a significant elevation in glutathione
and malondialdehyde levels in bees, indicating lipid peroxidation. This is the first
study indicating the harmful impacts of tebuconazole + fluopyram on honeybee health.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (85)
1.
Abdu-Allah G.A.M., Pittendrigh B.R. 2018. Lethal and sub-lethal effects of select macrocyclic lactones insecticides on forager worker honey bees under laboratory experimental conditions. Ecotoxicology 27 (1): 81–88. DOI:
https://doi.org/10.1007/ s10646-017-1872-6.
2.
Abou-Shaara H.F. 2018. Scientific note: Similarities between survival analysis using Kaplan-Meier and ANOVA. Thailand Statistician 16 (2): 221–229.
3.
Al Naggar Y., Singavarapu B., Paxton R.J., Wubet T. 2022. Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. The Science of the Total Environment 849: 157941. DOI:
https://doi.org/10.1016/j.scit....
4.
Al Naggar Y., Wubet T. 2024. Chronic exposure to pesticides disrupts the bacterial and fungal co-existence and the cross-kingdom network characteristics of honey bee gut microbiome. The Science of the Total Environment 906: 167530. DOI:
https://doi.org/ 10.1016/j.scitotenv.2023.167530.
5.
Almasri H., Tavares D.A., Pioz M., Sené D., Tchamitchian S., Cousin M., Brunet J.L., Belzunces L.P. 2020. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicology and Environmental Safety 203:111013. DOI:
https://doi.org/10.1016/j.ecoe....
6.
Almasri H., Tavares D.A., Tchamitchian S., Pélissier M., Sené D., Cousin M., Brunet J.L., Belzunces L.P. 2021. Toxicological status changes the susceptibility of the honey bee Apis mellifera to a single fungicidal spray application. Environmental Science and Pollution Research International 28 (31): 42807–42820. DOI:
https://doi.org/10.1007 /s11356-021-13747-3.
7.
Azpiazu C., Bosch J., Martins C., Sgolastra F. 2022. Effects of chronic exposure to the new insecticide sulfoxaflor in combination with a SDHI fungicide in a solitary bee. Science of the Total Environment 850: 157822. DOI:
https://doi.org/10.1016/j.scit.... 2022.157822.
8.
Azpiazu C., Bosch J., Viñuela E., Medrzycki P., Teper D., Sgolastra F. 2019. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Scientific Reports 9 (1): 13770. DOI:
https://doi.org/10.1038/s41598....
9.
Badawy M.E., Nasr H.M., Rabea E.I. 2015. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46: 177–193. DOI:
https://doi.org/10.1007/s13592....
10.
Bagnyukova T.V., Chahrak O.I., Lushchak V.I. 2006. Coordinated response of goldfish antioxidant defenses to environmental stress. Aquatic Toxicology 78 (4): 325–331. DOI:
https://doi.org/10.1016/j.aqua....
11.
Belsky J., Joshi N.K. 2020. Effects of fungicide and herbicide chemical exposure on apis and non-apis bees in agricultural landscape. Frontiers in Environmental Science 8: 81. DOI:
https://doi.org/10.3389/fenvs.....
12.
Ben Othmène Y., Monceaux K., Belhadef A., Karoui A., Ben Salem I., Boussabbeh M., Abid-Essefi S., Lemaire C. 2022. Triazole fungicide tebuconazole induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Environmental Toxicology and Pharmacology 94: 103919. DOI:
https://doi.org/10.1016/j.etap....
13.
Brodschneider R., Omar E., Crailsheim K. 2022. Flight performance of pollen starved honey bees and incomplete compensation through ingestion after early life pollen deprivation. Frontiers in Physiology 13: 1004150. DOI:
https://doi.org/10.3389/fphys.....
14.
Cang T., Lou Y., Zhu Y.C., Li W., Weng H., Lv L., Wang Y. 2023. Mixture toxicities of tetrachlorantraniliprole and tebuconazole to honey bees (Apis mellifera L.) and the potential mechanism. Environment International 172: 107764. DOI:
https://doi.org/10.1016/j.envi....
15.
Chang Y., Mao L., Zhang L., Zhang Y., Jiang H., 2020. Combined toxicity of imidacloprid, acetochlor, and tebuconazole to zebrafish (Danio rerio): acute toxicity and hepatotoxicity assessment. Environmental Science and Pollution Research 27 (10): 10286–10295. DOI:
https://doi.org/10.1007/s11356....
16.
Chen J., Saleem M., Wang C., Liang W., Zhang Q. 2018. Individual and combined effects of herbicide tribenuron-methyl and fungicide tebuconazole on soil earthworm Eisenia fetida. Scientific Reports 8 (1): 2967. DOI:
https://doi.org/10.1038/s41598....
17.
Coremen M., Turkyilmaz I.B., Us H., Us A.S., Celik S.E., Ozel A., Bulan O.K., Yanardag R. 2022. Lupeol inhibits pesticides induced hepatotoxicity via reducing oxidative stress and inflammatory markers in rats. Food and Chemical Toxicology 164: 113068. DOI:
https://doi.org/10.1016/j.fct.....
18.
Corona M., Robinson G.E. 2006. Genes of the antioxidant system of the honey bee: Annotation and phylogeny. Insect Molecular Biology 15 (5): 687–701. DOI:
https://doi.org/10.1111/j.1365....
19.
Costa E.M., Araujo E.L., Maia A.V., Silva F.E., Bezerra C.E., Silva J.G. 2014. Toxicity of insecticides used in the Brazilian melon crop to the honey bee Apis mellifera under laboratory conditions. Apidologie 45: 34–44. DOI:
https://doi.org/10.1007/s13592....
20.
DeGrandi-Hoffman G., Chen Y., Simonds R. 2013. The Effects of pesticides on queen rearing and virus titers in honey bees (Apis mellifera L.). Insects 4 (1): 71–89. DOI:
https://doi.org/10.3390/insect....
21.
Delkash-Roudsari S., Chicas-Mosier A.M., Goldansaz S.H., Talebi-Jahromi K., Ashouri A., Abramson C.I. 2020. Assessment of lethal and sublethal effects of imidacloprid, ethion, and glyphosate on aversive conditioning, motility, and lifespan in honey bees (Apis mellifera L.). Ecotoxicology and Environmental Safety 204: 111108. DOI:
https://doi.org/10.1016/j.ecoe....
22.
Duan X., Wang L., Wang R., Xiong M., Qin G., Huang S., Li J. 2024. Variation in the physiological response of adult worker bees of different ages (Apis mellifera L.) to pyraclostrobin stress. Ecotoxicology and Environmental Safety 269: 115754. DOI:
https://doi.org/10.1016/j.ecoe....
23.
Everich R., Schiller C., Whitehead J., Beavers M., Barrett K. 2009. Effects of captan on Apis mellifera brood development under field conditions in California almond orchards. Journal of Economic Entomology 102 (1): 20–29. DOI:
https://doi.org/10.1603 /029.102.0104.
24.
Faske T.R., Hurd, K. 2015. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to Fluopyram. Journal of Nematology 47 (4): 316–321.
25.
Ferreira D., da Motta A.C., Kreutz L.C., Toni C., Loro V.L., Barcellos L.J.G. 2010. Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals. Chemosphere 79 (9): 914–921. DOI:
https://doi.org/10.1016/j.chem....
26.
Fisher A.II, Cogley T., Ozturk C., DeGrandi-Hoffman G., Smith B.H., Kaftanoglu O., Fewell J.H., Harrison J.F. 2021. The active ingredients of a mitotoxic fungicide negatively affect pollen consumption and worker survival in laboratory-reared honey bees (Apis mellifera). Ecotoxicology and Environmental Safety 226: 112841. DOI:
https://doi.org/10.1016/j.ecoe....
27.
Fisher A.II., Coleman C., Hoffmann C., Fritz B., Rangel J. 2017. The Synergistic effects of almond protection fungicides on honey bee (Hymenoptera: Apidae) forager survival. Journal of Economic Entomology 110 (3): 802–808. DOI:
https://doi.org/10.1093/jee/to....
28.
Herrero-Hernández E., Andrades M.S., Sánchez-Martín M.J., Marín-Benito J.M., Rodríguez-Cruz M.S. 2023. Effect of applying an organic amendment on the persistence of tebuconazole and fluopyram in vineyard soils. Agronomy 13 (5): 1270. DOI:
https://doi.org/10.3390/agrono....
29.
Huang M., Dong J., Yang S., Xiao M., Guo H., Zhang J., Wang D. 2023. Ecotoxicological effects of common fungicides on the eastern honeybee Apis cerana cerana (Hymenoptera). Science of the Total Environment 868: 161637. DOI:
https://doi.org/10.1016/j.scit....
30.
Iwasa T., Motoyama N., Ambrose J.T., Roe R.M. 2004. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection 23 (5): 371–378. DOI:
https://doi.org/10.1016/j.crop....
31.
Iwasaki J.M., Hogendoorn K. 2021. Non-insecticide pesticide impacts on bees: A review of methods and reported outcomes. Agriculture, Ecosystems and Environment 314: 107423. DOI:
https://doi.org/10.1016/j.agee....
32.
Jaffe B.D., Lois A.N., Guedot C. 2019. Effect of fungicide on pollen foraging by honeybees (Hymenoptera: Apidae) in cranberry differs by fungicide type. Journal of Economic Entomology 112 (1): 499–503. DOI:
https://doi.org/10.1093/jee/to....
34.
Johnson R.M., Dahlgren L., Siegfried B.D., Ellis M.D. 2013. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PloS one 8 (1): e54092. DOI:
https://doi.org/ 10.1371/journal.pone.0054092.
35.
Kessler S.C., Tiedeken E.J., Simcock K.L., Derveau S., Mitchell J., Softley S., Stout J.C., Wright G.A. 2015. Bees prefer foods containing neonicotinoid pesticides. Nature 521: 74–76. DOI:
https://doi.org/10.1038/nature....
36.
Klein A.M., Vaissière B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences 274 (1608): 303–313. DOI:
https://doi.org/10.1098/rspb.2....
37.
Ku T., Zhou M., Hou Y., Xie Y., Li G., Sang N. 2021. Tebuconazole induces liver injury coupled with ROS-mediated hepatic metabolism disorder. Ecotoxicology and Environmental Safety 220: 112309. DOI:
https://doi.org/10.1016/j.ecoe....
38.
Kumar N., Awoyemi O., Willis A., Schmitt C., Ramalingam L., Moustaid-Moussa N., Crago J. 2019. Comparative lipid peroxidation and apoptosis in embryo-larval zebrafish exposed to 3 azole Fungicides, tebuconazole, propiconazole, and myclobutanil, at environmentally relevant concentrations. Environmental Toxicology and Chemistry 38 (7): 1455–1466. DOI:
https://doi.org/10.1002/etc.44....
39.
Li G., Li D., Rao H., Liu X. 2022. Potential neurotoxicity, immunotoxicity, and carcinogenicity induced by metribuzin and tebuconazole exposure in earthworms (Eisenia fetida) revealed by transcriptome analysis. Science of the Total Environment 807: 150760. DOI:
https://doi.org/10.1016/j.scit....
40.
Li S., Jiang H., Qiao K., Gui W., Zhu G. 2019. Insights into the effect on silkworm (Bombyx mori) cocooning and its potential mechanisms following non-lethal dose tebuconazole exposure. Chemosphere 234: 338–345. DOI:
https://doi.org/10.1016/j.chem....
41.
Li S., Jiang Y., Sun Q., Coffin S., Chen L., Qiao K., Gui W., Zhu G. 2020. Tebuconazole induced oxidative stress related hepatotoxicity in adult and larval zebrafish (Danio rerio). Chemosphere 241: 125129. DOI:
https://doi.org/10.1016/j.chem....
42.
Li Z., Guo D., Wang C., Chi X., Liu Z., Wang Y., Wang H., Guo X., Wang N., Xu B., Gao Z. 2024. Toxic effects of the heavy metal Cd on Apis cerana cerana (Hymenoptera: Apidae): Oxidative stress, immune disorders and disturbance of gut microbiota. The Science of the Total Environment 912: 169318. DOI:
https://doi.org/ 10.1016/j.scitotenv.2023.169318.
43.
Li Z., Li M., He J., Zhao X., Chaimanee V., Huang W.F., Nie H., Zhao Y., Su S. 2017. Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana. Pesticide Biochemistry and Physiology 140: 1–8. DOI:
https://doi.org/10.1016/j.pest....
44.
Liu Y., Zhang W., Wang Y., Liu H., Zhang S., Ji X., Qiao K. 2022. Oxidative stress, intestinal damage, and cell apoptosis: Toxicity induced by fluopyram in Caenorhabditis elegans. Chemosphere 286: 131830. DOI:
https://doi.org/10.1016/j.chem....
45.
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193 (1): 265–275.
46.
Lück H. 1965. Catalase. p. 885–894. In: “Methods of Enzymatic Analysis” (Bergmeyer H.U., ed.). Academic Press, New York and London. DOI:
https://doi.org/10.1016/B978-0....
47.
Lv L., Li W., Li X., Wang D., Weng H., Zhu Y.C., Wang Y. 2023. Mixture toxic effects of thiacloprid and cyproconazole on honey bees (Apis mellifera L.). The Science of the Total Environment 870: 161700. DOI:
https://doi.org/10.1016/j.scit....
48.
Mackei M., Sebők C., Vöröházi J., Tráj P., Mackei F., Oláh B., Fébel H., Neogrády Z., Mátis G. 2023. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. Insect Biochemistry and Molecular Biology 159: 103990. DOI:
https://doi.org/10.1016/j.ibmb....
49.
Mao W., Schuler M.A., Berenbaum M.R. 2017. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). Proceedings of the National Academy of Sciences of the United States of America 114 (10): 2538–2543. DOI:
https://doi.org/10.1073/pnas.1....
50.
Matadha N.Y., Mohapatra S., Siddamallaiah L., Udupi V.R., Gadigeppa S., Raja D.P. 2019. Uptake and distribution of fluopyram and tebuconazole residues in tomato and bell pepper plant tissues. Environmental Science and Pollution Research 26 (6): 6077–6086. DOI:
https://doi.org/10.1007/s11356....
51.
Migdał P., Murawska A., Berbeć E., Zarębski K., Ratajczak N., Roman A., Latarowski K., 2024. Biochemical indicators and mortality in honey bee (Apis mellifera) workers after oral exposure to plant protection products and their mixtures. Agriculture 14 (1): 5. DOI:
https://doi.org/10.3390/agricu....
52.
Misra H.P., Fridovich I. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry 247 (10): 3170–3175. DOI:
https://doi.org/10.1016/s0021-....
53.
Mohamed I.A., Eslam M.O., Amer I.T., Abdulraouf M.A.A., Yahya A. 2023. Sublethal effects of herbicides clethodim, haloxyfop-P-methyl, and their mixture on honey bee health. Apidologie 54(1): 2. DOI:
https://doi.org/10.1007/s13592....
54.
Monteiro D.A., de Almeida J.A., Rantin F.T., Kalinin A.L. 2006. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comparative Biochemistry and Physiology - C Toxicology and Pharmacology 143 (2): 141–149. DOI:
https://doi.org/10.1016/j.cbpc....
55.
OECD. 2017. Test No. 245: Honey Bee (Apis mellifera L.), Chronic Oral Toxicity Test (10-Day Feeding) OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing.
56.
OECD.1998. Honey bees. Acute oral toxicity test. OECD guidelines for the testing of chemicals. Section 2, Effects on Biotic Systems. TG No. 213.
57.
Ohkawa H., Ohishi N., Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.
58.
Pal E., Almasri H., Paris L., Diogon M., Pioz M., Cousin M., Sené D., Tchamitchian S., Tavares D.A., Delbac F., Bolt N., Brunet J.L., Belzuncess L.P. 2022. Toxicity of the pesticides imidacloprid, difenoconazole and glyphosate alone and in binary and ternary mixtures to winter honey bees: Effects on survival and antioxidative defenses. Toxics 10 (3): 104. DOI:
https://doi.org/10.3390/toxics....
59.
Perez-Rodriguez, V., Souders, C.L., Tischuk, C., Martyniuk, C.J., 2019. Tebuconazole reduces basal oxidative respiration and promotes anxiolytic responses and hypoactivity in early-staged zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology 217: 87–97. DOI:
https://doi.org/10.1016/j.cbpc....
60.
Picard-Nizou A.L., Pham-Delegue M.H., Kerguelen V., Douault P., Marilleau R., Olsen L., Grison R., Toppan A., Masson C. 1995. Foraging behaviour of honey bees (Apis mellifera L.) on transgenic oilseed rape (Brassica napus L. var. oleifera). Transgenic Research 4: 270–276. DOI:
https://doi.org/10.1007/BF0196....
61.
Rand E.E.D., Smit S., Beukes M., Apostolides Z., Pirk C.W.W., Nicolson S.W. 2015. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Reports 2 (5): 11779. DOI:
https://doi.org/10.1038/srep11....
63.
Santana M.S., Sandrini-Neto L., Filipak Neto F., Oliveira Ribeiro C.A., Di Domenico M., Prodocimo M.M. 2018. Biomarker responses in fish exposed to polycyclic aromatic hydrocarbons (PAHs): Systematic review and meta-analysis. Environmental Pollution 242: 449–461. DOI:
https://doi.org/10.1016/j.envp....
64.
Schleker A.S.S., Rist M., Matera C., Damijonaitis A., Collienne U., Matsuoka K., Habash S.S., Twelker K., Gutbrod O., Saalwächter C., Windau M., Matthiesen S., Stefanovska T., Scharwey M., Marx M.T., Geibel S., Grundler F.M.W. 2022. Mode of action of fluopyram in plant-parasitic nematodes. Scientific Reports 12 (1): 11954. DOI:
https://doi.org/10.1038/s41598....
65.
Schuhmann A., Schmid A.P., Manzer S., Schulte J., Scheiner R. 2021. Interaction of insecticides and fungicides in bees. Frontiers in Insect Science 1: 808335. DOI:
https://doi.org/10.3389/finsc.....
66.
Sgolastra F., Arnan X., Cabbri R., Isani G., Medrzycki P., Teper D., Bosch J. 2018. Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proceedings of the Royal Society B: Biological Sciences 285: 20180887. DOI:
https://doi.org/10.1098/rspb.2....
67.
Shabeer A.T.P., Hingmire S., Patil R., Patil A., Sharma A.K., Taynath B. 2023. Dissipation kinetics and evaluation of processing factor for fluopyram + tebuconazole residues in/on grape and during raisin preparation. Journal of Food Composition and Analysis 120: 105292. DOI:
https://doi.org/10.1016/j.jfca....
68.
Sunderland M.R., Cruickshank R.H., Leighs S.J. 2014. The efficacy of antifungal azole and antiprotozoal compounds in protection of wool from keratin-digesting insect larvae. Textile Research Journal 84 (9): 924–931. DOI:
https://doi.org/10.1177/004051....
69.
Tawfik A. I., Ahmed Z.H., Abdel-Rahman M.F., Moustafa A.M. 2023. Effect of some bee bread quality on protein content and antioxidant system of honeybee workers. International Journal of Tropical Insect Science 43 (1): 93–105. DOI:
https://doi.org/10.1007/s42690....
70.
Tawfik A.I., Ahmed Z.H., Abdel-Rahman M.F., Moustafa A.M. 2020. Influence of winter feeding on colony development and the antioxidant system of the honey bee, Apis mellifera. Journal of Apicultural Research 59 (5): 752–763. DOI:
https://doi.org/10.1080/ 00218839.2020.1752456.
71.
Thompson H.M., Fryday S.L., Harkin S., Milner S. 2014. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 45 (5): 545–553. DOI:
https://doi.org/10.1007/s13592....
72.
Toni C., Ferreira D., Kreutz L.C., Loro V.L., Barcellos L.J.G. 2011. Assessment of oxidative stress and metabolic changes in common carp (Cyprinus carpio) acutely exposed to different concentrations of the fungicide tebuconazole. Chemosphere 83 (4): 579–584. DOI:
https://doi.org/10.1016/j.chem....
73.
Tosi S., Sfeir C., Carnesecchi E., vanEngelsdorp D., Chauzat M.P. 2022. Lethal, sublethal, and combined effects of pesticides on bees: A meta-analysis and new risk assessment tools. Science of the Total Environment 844: 156857. DOI:
https://doi.org/10.1016/j.scit....
74.
Tripathy V., Sharma K.K., Mohapatra S., Siddamallaiah L., Matadha N.Y., Patil C.S., Saindane Y.S., Deore B., Rao C.S., Parmar K.D., Litoriya N.S., Shah P.G., Sharma K. 2022. Persistence evaluation of fluopyram + tebuconazole residues on mango and pomegranate and their risk assessment. Environmental Science and Pollution Research 29 (22): 33180–33190. DOI:
https://doi.org/10.1007/s11356....
75.
Tsikas D. 2017. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry 524: 13–30. DOI:
https://doi.org/10.1016/j.ab.2....
76.
Végh R., Csóka M., Mednyánszky Z., Sipos L. 2023. Pesticide residues in bee bread, propolis, beeswax and royal jelly – A review of the literature and dietary risk assessment. Food and Chemical Toxicology 176: 113806. DOI:
https://doi.org/10.1016/j.fct.....
77.
Ward K., Cleare X., Li-Byarlay H. 2022. The life span and levels of oxidative stress in foragers between feral and managed honey bee colonies. Journal of Insect Science. 22 (1): 20. DOI:
https://doi.org/10.1093/jisesa....
78.
Wernecke A., Frommberger M., Forster R., Pistorius J. 2019. Lethal effects of various tank mixtures including insecticides, fungicides and fertilizers on honey bees under laboratory, semi-field and field conditions. Journal fur Verbraucherschutz und Lebensmittelsicherheit 14 (3): 239–249. DOI:
https://doi.org/10.1007/s00003....
79.
Williams G.R., Alaux C., Costa C., Csaki T., Doublet V., Eisenhardt D., Fries I., Kuhn R., McMahon D.P., Medrzycki P., Murray T.E. 2013. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. Journal of Apicultural Research 52 (1): 1–36. DOI:
https://doi.org/10.3896/IBRA.1....
80.
Winston M.L. 1987. The biology of the Honeybee. Harvard University Press, Cambridge, 294 pp.
81.
Yang J.D., Liu S.H., Liao M.H., Chen R.M., Liu P.Y., Ueng T.H. 2018. Effects of tebuconazole on cytochrome P450 enzymes, oxidative stress, and endocrine disruption in male rats. Environmental Toxicology 33 (8): 899–907. DOI:
https://doi.org/10.1002/tox.22....
82.
Yazlovytska L.S., Karavan V.V., Domaciuk M., Panchuk I.I., Borsuk G., Volkov R.A. 2023. Increased survival of honey bees consuming pollen and beebread is associated with elevated biomarkers of oxidative stress. Frontiers in Ecology and Evolution 11: 1098350. DOI:
https://doi.org/10.3389/fevo.2....
83.
Zhu Y.C., Yao J., Adamczyk J., Luttrell R. 2017a. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera). PLoS one 12 (5): e0176837. DOI:
https://doi.org/10.1371/journa....
84.
Zhu Y.C., Yao J., Adamczyk J., Luttrell R. 2017b. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLoS one 12 (5): e0178421. DOI:
https://doi.org/10.1371/journa....
85.
Zubrod J.P., Bundschuh M., Arts G., Brühl C.A., Imfeld G., Knäbel A., Payraudeau S., Rasmussen J.J., Rohr J., Scharmüller A., Smalling K., Stehle S., Schulz R., Schäfer R. B. 2019. Fungicides: An overlooked pesticide class? Environmental Science and Technology 53 (7): 3347–3365. DOI:
https://doi.org/10.1021/acs.es....