ORIGINAL ARTICLE
Overexpression of cytochrome P50 CYP6B7 mediated pyrethroid resistance in Indian strains of the cotton bollworm, Helicoverpa armigera (Hübner)
 
More details
Hide details
1
Department of Plant Protection, Faculty of Agriculture, Sohag University, Elkawther City, Sohag, 82749, Egypt
 
2
Division of Plant Protection, Central Institute for Cotton Research, Nagpur, India
 
3
Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
 
 
Submission date: 2014-05-03
 
 
Acceptance date: 2014-08-11
 
 
Corresponding author
Ashraf Oukasha Abd El-Latif
Department of Plant Protection, Faculty of Agriculture, Sohag University, Elkawther City, Sohag, 82749, Egypt
 
 
Journal of Plant Protection Research 2014;54(3):287-293
 
KEYWORDS
TOPICS
ABSTRACT
The role of cytochrome P450 monooxygenase in pyrethroid resistance was studied in different strains of the cotton bollworm, Helicoverpa armigera, from India. Filed collected strains of Nagpur and Delhi were compared to the laboratory reared population. The re- sults showed a high resistance to deltamethrin, α-cypermethrin, and β-cyfluthrin. The results also showed that this resistance could be reduced by using piperonyl butoxide (PBO). The Nagpur and Delhi strains were found to have a 2.40 and 1.79 fold higher monooxygenase activity compared to a susceptible strain. A strong, positive correlation between monooxygenase activity and pyrethroid resistance was observed (r = 0.86 – 0.98). The relative expression of the housekeeping gene, EF-1α, and three P450 genes, was studied in the 5th instar larval midgut of the three strains. Out of the three P450 genes examined, expression of CYP6B7 mRNA was not detected in the midgut of the susceptible strain though it was highly expressed in the resistant strains. The midgut of the Nagpur strain had a 2.60 fold overexpression of CYP6B7 mRNA compared to the moderately resistant, Delhi strain. The mRNA of CYP4G8 and CYP6B2 were not overexpressed in either the Nagpur or Delhi strain. The results indicated that the elevated cytochrome P450 monooxygenase activity is associated with pyrethroid resistance in Indian strains of H. armigera, and CYP6B7 could be the P450 form responsible for pyrethroid resistance.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (35)
1.
Abd Elghafar S.E., Knowles C.O. 1996. Pharmacokinetics of fenvalerate in laboratory and field stains of Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol. 89: 590–593.
 
2.
Abd El-Latif A.O., Subrahmanyam B. 2010a. Pyrethroid synergists suppress esterase-mediated resistance in Indian strains of the cotton bollworm, Helicoverpa armigera (Hübner). Pestic. Biochem. Physiol. 97 (3): 279–288.
 
3.
Abd EL-Latif A.O., Subrahmanyam B. 2010b. Pyrethroid resistance and esterase activity in three strains of the cotton bollworm, Helicoverpa armigera (Hübner). Pestic. Biochem. Physiol. 96 (3): 155–159.
 
4.
Agosin M. 1985. Role of microsomal oxidation in insecticide degradation. p. 647–712. In: “Comprehensive Physiology, Biochemistry and Pharmacology”. Vol. 12. (G.A Kerkut, L.I. Gilbert, eds.). Pergamon Press, New York, USA, 849 pp.
 
5.
Ahmad M., McCaffery A.R. 1991. Elucidation of detoxification mechanisms involved in resistance to insecticides in the third instar larvae of a field-selected strain of Helicoverpa armigera with the use of synergists. Pestic. Biochem. Physiol. 41 (1): 41–52.
 
6.
Barden G.P., Rose A., Gunning R.V. 1992. Cytochrome P450 content and aldrin epoxidase activity in larvae of a susceptible and a pyrethroid-resistant strain of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust. J. Entomol. 31 (4): 350.
 
7.
Brun-Barale A., Héma O., Martin T., Suraporn S., Audant P., Sezutsu H., Feyereisen R. 2010. Multiple P450 gene overexpressed in deltamethrin-resistant strains of Helicoverpa armigera. Pest Manage. Sci. 66 (8): 900–909.
 
8.
Bues R., Bouvier J.C., Boudinhon L. 2005. Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the south of France. Crop Prot. 24 (9): 814–820.
 
9.
Chen S., Yang Y., Wu Y. 2005. Correlation between fenvalerate resistance and cytochrome P450-mediated o-demethylation activity in Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 98 (3): 943–946.
 
10.
Dhingra S., Phokela A., Mehrotra K.N. 1988. Cypermethrin resistance in the strains of Heliothis armigera. National Academy of Science, India. Sci. Lett. 11: 123–125.
 
11.
EPPO 2006. Distribution maps of quarantine pests. Helicoverpa armigera. www.eppo.org/QUARANTINE/insects/Helicoverpa_armigera/HELIAR map [Accessed: December 27, 2014].
 
12.
Gunning R.V., Easton C.S., Balfe M.E., Ferris I.G. 1991. Pyrethroid resistance mechanism in Australian Helicoverpa armigera. Pestic. Sci. 33 (4): 373–390.
 
13.
Gunning R.V., Easton C.S., Greenup L.R., Edge V.E. 1984. Pyrethroid resistance in Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in Australia. J. Econ. Entomol. 77 (3): 1283–1287.
 
14.
Gunning R.V., Moores G.D., Devonshire A.L. 1996. Esterase and fenvalerate resistance in field population in Australian Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 54 (1): 12–23.
 
15.
Gunning R.V., Moores G.D., Devonshire A.L. 1999. Esterase inhibitors synergize the toxicity of pyrethroids in Australian Heilcoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 63 (1): 50–62.
 
16.
Kranthi K.R. 2005. Insecticide Resistance-Monitoring, Mechanisms and Management Manual. Central Institute for Cotton Research, PB No 2, Shankarnagar PO, Nagpur 440010, India, 153 pp.
 
17.
Kranthi K.R., Armes N.J., Nagarjun G.V., Raj S., Sundaramurthy V.T. 1997. Seasonal dynamics of metabolic mechanisms mediating pyrethroid resistance in Helicoverpa armigera in central India. Pestic. Sci. 50 (2): 91–98.
 
18.
Kranthi K.R., Jadhav D.R., Wanjari R.R., Kranthi S., Russell D. 2001. Pyrethroid resistance and mechanism of resistance in field strains of Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 94 (1): 253–263.
 
19.
Martin T., Chandre F., Ochou O.G., Vaissayre M., Fournier D. 2002. Pyrethroid resistance mechanisms in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa. Pestic. Biochem. Physiol. 74 (1): 17–26.
 
20.
Martin T., Ochou G., Vaissayre M., Fournier D. 2003. Oxidases responsible for resistance to pyrethroids sensitize Helicoverpa armigera (Hübner) to triazophos in West Africa. Insect Biochem. Mol. Biol. 33 (9): 883–887.
 
21.
McCaffery A.R., King A.B.S., Walker A.J., El-Nayir H. 1988. Resistance to synthetic pyrethroids in the bollworm Heliothis armigera from Andhra Pradesh, India. Pestic. Sci. 27 (1): 65–76.
 
22.
Omura T., Sato R. 1964. The carbon mono-oxide binding pigment of liver microsomes. II. Solubilization, purification and properties. J. Biol. Chem. 239 (7): 2379–2385.
 
23.
Pittendrigh B., Aronstein T.K., Zinkovsky T.E., Andreev O., Campbell T.B., Daly J., Trowell S., Ffrench-Constant R.H. 1997. Cytochrome P450 genes from Helicoverpa armigera: Expression in a pyrethroid-susceptible and-resistant strain. Insect Biochem. Mol. Biol. 27 (6): 507–512.
 
24.
Ranasinghe C., Campbell B., Hobbs A.A. 1998. Overexpression of cytochrome P450 CYP6B7 mRNA and pyrethroid resistance in Australian strains of Helicoverpa armigera (Hübner). Pestic. Sci. 54 (3): 195–202.
 
25.
Rao G.M.V.P., Rao N.H.P. 2006. Insecticide Resistance Management for Cotton Pests. Associate Director of Research, PARS, Nandyal, India, 61 pp.
 
26.
Rose R.L., Barbhaiya L., Roe R.M., Rock G.C., Hodgson E. 1995. Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in Heliothis virescens. Pestic. Biochem. Physiol. 51 (3): 178–191.
 
27.
Scott J.G. 1999. Cytochrome P450 and insecticide resistance. Insect Biochem. Mol. Biol. 29 (9): 757–777.
 
28.
Singh P. 1977. Artificial Diets for Insects, Mites and Spiders. IFI, Plenum, New York, USA, 594 pp.
 
29.
Srinivas R., Udikeri S.S., Jayalakshmi S.K., Sreeramulu K. 2004. Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Comp. Biochem. Physiol. 137 (3): 261–269.
 
30.
Wang X., Hobbs A.A. 1995. Isolation and sequence analysis of cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera. Insect Biochem. Mol. Biol. 25 (9): 1001–1009.
 
31.
Winner J., Jung C.K., Shackel I., Williams P.M. 1999. Developmental and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in Cardica myocytes in vitro. Anal. Biochem. 270 (1): 41–49.
 
32.
Yang Y., Chen S., Wu S., Yue L., Wu Y. 2006. Constitutive overexpression of multiple cytochrome P450 genes associated with pyrethroid resistance in Helicoverpa armigera. J. Econ. Entomol. 99 (5): 1784–1789.
 
33.
Yang Y., Wu Y., Chen S., Devine G.J., Denholm I., Jewess P., Moores G.D. 2004. The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia. Insect Biochem. Mol. Biol. 34 (8): 763–773.
 
34.
Yang E., Yang Y., Wu S., Wu Y. 2005. Relative toxicity to detoxification enzymes to pyrethroid resistance in a resistant strain of Heilcoverpa armigera. J. Appl. Entomol. 129 (9/10): 521–525.
 
35.
Yang Y., Yue L., Chen S., Wu Y. 2008. Functional expression of Helicoverpa armigera CYP9A12 and CYP9A14 in Saccharomyces cerevisiae. Pestic. Biochem. Physiol. 92 (2): 101–105.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top