ORIGINAL ARTICLE
Structure-activity relationship study for fungicidal activity of 1-(4-phenoxymethyl-2-phenyl-[1,3]dioxolan-2-ylmethyl)-1H-1,2,4-triazole derivatives against rice blast
			
	
 
More details
Hide details
	
	
									
				1
				Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Shimoshinjo Nakano,  
Akita 010-0195, Japan
				 
			 
										
				
				
		
		 
			
			
			
			 
			Submission date: 2015-03-18
			 
		 		
		
		
		
			
			 
			Acceptance date: 2015-10-23
			 
		 		
		
		
		 
	
							
																				    		
    			 
    			
    				    					Corresponding author
    					    				    				
    					Keimei  Oh 
    					Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, 241-438, Shimoshinjo Nakano,  
Akita 010-0195, Japan
    				
 
    			
				 
    			 
    		 		
			
							 
		
	 
		
 
 
Journal of Plant Protection Research 2015;55(4):383-388
		
 
 
KEYWORDS
TOPICS
ABSTRACT
To explore new antifungal agents for rice blast control, the antifungal activity of a series of novel 1,2,4-triazole derivatives 
against 
Magnaporthe oryzae 
has been evaluated. The antifungal activity was determined by using 
in vitro
 mycelial growth inhibition 
tests. Among the 19 test compounds, we found that the compound 1-(4-phenoxymethyl-2-phenyl-[1,3]dioxolan-2-ylmethyl)-1
H
-1,2,4-
triazole (Gj
) displayed potent antifungal activity against 
M. oryzae. The IC
50
 value was found approximately 3.8±0.5 μM and the IC
50
value of propiconazole was found to be approximately 3.7±0.2 μM, respectively. Structure-activity relationship studies on aromatic 
ring  structures  provided  insight  and  information  about  the  structural  requirements  for  antifungal  activity  of  this  synthetic  series  
against 
M. oryzae
		
	
		
    
    CONFLICT OF INTEREST
    
    	The authors have declared that no conflict of interests exist.
     
REFERENCES (25)
			
	1.
	
		Baldwin B.C., Rathmell W.G. 1988. Evolution of concepts for chemical control of plant disease. Annual Review of Phytopathology 26: 265–283.
		
	 
	 
 			
	2.
	
		Bechinger C., Giebel K.F., Schnell M., Leiderer P., Deising H.B., Bastmeyer M. 1999. Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285 (5435): 1896–1899.
		
	 
	 
 			
	3.
	
		Clergeot P.H., Gourgues M., Cots J., Laurans F., Latorse M.P., Pépin R., Tharreau D., Notteghem J.L., Lebrun M.H. 2001. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proceedings of the National Academy of Sciences of the United States of America 98 (12): 6963–6968.
		
	 
	 
 			
	4.
	
		Clouse S.D., Sasse J.M. 1998. Brassinosteroids: essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology 49: 427–451.
		
	 
	 
 			
	5.
	
		Davidse L.C. 1986. Benzimidazole fungicides: mechanism of action and biological impact. Annual Review of Phytopathology 24: 43–65.
		
	 
	 
 			
	6.
	
		Hartmann M.A. 1998. Plant sterols and the membrane environment. Trends in Plant Science 3 (5): 170–175.
		
	 
	 
 			
	7.
	
		Jiang Z., Wang Y., Wang W., Wang S., Xu B., Fan G., Dong G., Liu Y., Yao J., Miao Z., Zhang W., Sheng C. 2013. Discovery of highly potent triazole antifungal derivatives by heterocycle-benzene bioisosteric replacement. European Journal of Medicinal Chemistry 64: 16–22.
		
	 
	 
 			
	8.
	
		Knight S.C., Anthony V.M., Brady A.M., Greenland A.J., Heaney S.P., Murray D.C., Powell K.A., Schulz M.A., Spinks C.A., Worthington P.A., Youle D. 1997. Rationale and perspectives on the development of fungicides. Annual Review of Phytopathology 35: 349–372.
		
	 
	 
 			
	9.
	
		Koymans L., Donné-op den Kelder G.M., Koppele Te J.M., Vermeulen N.P. 1993. Cytochromes P450: their active-site structure and mechanism of oxidation. Drug Metabolism Reviews 25 (3): 325–387.
		
	 
	 
 			
	10.
	
		Lin S., Yang C., Yang H., Ni J., Zhang X. 2005. [Synthesis and antifungal activities of 1-[2-(2,4-dichlorophenyl)-4-alkoxymethyl-1,3-dioxolan-2-yl]methyl-1,2,4-triazoles]. Jingxi Huagong [Fine Chemicals] 22 (6): 862–865. (in Chinese).
		
	 
	 
 			
	11.
	
		Oh K., Matsumoto T., Yamagami A., Ogawa A., Yamada K., Suzuki R., Sawada T., Fujioka S., Yoshizawa Y., Nakano T. 2015. YCZ-18 is a new brassinosteroid biosynthesis inhibitor. PlosONE 10 (3): e0120812.
		
	 
	 
 			
	12.
	
		Oh K., Shimura Y., Ishikawa K., Ito Y., Asami T., Murofushi N., Yoshizawa Y. 2008. Asymmetric synthesis and stereochemical structure-activity relationship of (R)-and (S)-8-[1-(2,4-dichlorophenyl)-2-imidazol-1-yl-ethoxy] octanoic acid heptyl ester, a potent inhibitor of allene oxide synthase. Bioorganic and Medicinal Chemistry 16 (3): 1090–1095.
		
	 
	 
 			
	13.
	
		Oh K., Yamada K., Asami T., Yoshizawa Y. 2012. Synthesis of novel brassinosteroid biosynthesis inhibitors based on the ketoconazole scaffold. Bioorganic and Medicinal Chemistry Letter 22 (4): 1625–1628.
		
	 
	 
 			
	14.
	
		Oh K., Yamada K., Yoshizawa Y. 2013. Asymmetric synthesis and effect of absolute stereochemistry of YCZ-2013, a brassinosteroid biosynthesis inhibitor. Bioorganic and Medicinal Chemistry Letter 23 (24): 6915–6919.
		
	 
	 
 			
	15.
	
		Solomon P.S., Tan K.C., Oliver R.P. 2003. The nutrient supply of pathogenic fungi, a fertile field for study. Molecular Plant Pathology 4 (3): 203–210.
		
	 
	 
 			
	16.
	
		Scheinfeld N. 2008. Ketoconazole: a review of a workhorse antifungal molecule with a focus on new foam and gel formulations. Drugs of Today (Barcelona, Spain: 1998) 44 (5): 369–380.
		
	 
	 
 			
	17.
	
		Szklarz G.D., Halpert J.R. 1998. Molecular basis of P450 inhibition and activation: implications for drug development and drug therapy. Drug Metabolism and Disposition 26 (12): 1179–1184.
		
	 
	 
 			
	18.
	
		Talbot N.J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annual Reviews of Microbiology 57: 177–202.
		
	 
	 
 			
	19.
	
		Tanoury G.J., Hett R., Wilkinson H.S., Wald S.A., Senanayake C.H. 2003. Total synthesis of (2R,4S,2’S,3’R)-hydroxyitraconazole: implementations of a recycle protocol and a mild and safe phase-transfer reagent for preparation of the key chiral units. Tetrahedron: Asymmetry 14 (22): 3487–3493.
		
	 
	 
 			
	20.
	
		Tanoury G.J., Senanayake C.H., Hett R., Kuhn A.M., Kessler D.W., Wald S.A. 1998. Pd-catalyzed aminations of aryl triazolones: effective synthesis of hydroxyitraconazole enantiomers. Tetrahedron Letters 39 (38): 6845–6848.
		
	 
	 
 			
	21.
	
		Testa B., Jenner P. 1981. Inhibitors of cytochrome P-450s and their mechanism of action. Drug Metabolism Reviews 12 (1): 1–117.
		
	 
	 
 			
	22.
	
		Thurston H.D. 1998. Tropical Plant Diseases. American Phytopathological Society, APS Press, St. Paul, USA, 208 pp.
		
	 
	 
 			
	23.
	
		Yamada K., Yajima O., Yoshizawa Y., Oh K. 2013. Synthesis and biological evaluation of novel azole derivatives as selective potent inhibitors of brassinosteroid biosynthesis. Bioorganic and Medicinal Chemistry 21 (9): 2451–2461.
		
	 
	 
 			
	24.
	
		Yamada K., Yoshizawa Y., Oh K. 2012. Synthesis of 2RS,4RS-1-[2-phenyl-4-[2-(2-trifluromethoxy-phenoxy)-ethyl]-1,3-diox-olan-2-yl-methyl]-1H-1,2,4-triazole derivatives as potent inhibitors of brassinosteroid biosynthesis. Molecules 17 (4): 4460–4473.
		
	 
	 
 			
	25.
	
		Zarn J.A., Brüschweiler B.J., Schlatter J.R. 2003. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environmental Health Perspectives 111 (3): 255–261.