A primary attempt of Leptinotarsa decemlineata control using contact DNA insecticide based on short antisense oligonucleotide of its CYP6B gene
Oberemok Volodymyr 1, A-E
Kateryna Laikova 2, E
Maksym Shumskykh 1, B,F  
Igor Kenyo 3, B
Igor Kasich 4, B
Karim Deri 4, B
Alisa Krasnodubets 1, B
Viktoriya Bekirova 1, B-C
More details
Hide details
Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Republic of Crimea
Department of Biochemistry, Medical Academy, V.I. Vernadsky Crimean Federal University, Republic of Crimea
Department of Olericulture and Plant Protection, Academy of Bioresources and Environmental Management, V.I. Vernadsky Crimean Federal University, Republic of Crimea
Department of Pathological Anatomy, Medical Academy, V.I. Vernadsky Crimean Federal University, Republic of Crimea
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Maksym Shumskykh   

Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Republic of Crimea
Submission date: 2017-12-13
Acceptance date: 2018-01-15
Journal of Plant Protection Research 2018;58(1):106–108
Effective control of Leptinotarsa decemlineata remains an urgent problem for the agriculture worldwide. Minimization of use of non-selective neonicotinoid insecticides, such as thiomethoxam, is an actual vector of development of potato cultivation. In this rapid communication, we show the prospect of topical using of short unmodified antisense fragment of L. decemlineata CYP6B gene as DNA insecticide. Investigated parameters, namely, number of larvae per plant, aboveground biomass, yield and number of potatoes produced per plant indicate a perspective of this post-genomic approach as a safe and effective method of L. decemlineata control
The authors have declared that no conflict of interests exist.
Alyokhin A., Dively G., Patterson M., Castaldo C., Rogers D., Mahoney M., Wollam J. 2007. Resistance and cross-resistance to imidacloprid and thiamethoxam in the Colorado potato beetle. Pest Management Science 63: 32–41. DOI: https://doi.org/10.1002/ps.130....
Cohen M.B., Schuler M.A., Berenbaum M.R. 1992. A host-inducible cytochrome P450 from a host-specific caterpillar: molecular cloning and evolution. Proceedings of the National Academy of Sciences 89: 10920–10924.
Dias N., Stein C.A. 2002. Antisense oligonucleotides: Basic concepts and mechanisms. Molecular Cancer Therapeutics 1: 347–355.
Goulson D. 2013. An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology 50 (4): 977–987. DOI: https://doi.org/10.1111/1365-2....
Huseth A.S., Groves R.L. 2014. Environmental fate of soil applied neonicotinoid insecticides in an irrigated agroecosystem. PLoS ONE 9 (5): e97081. DOI: https://doi.org/10.1371/journa....
Huseth A.S., Groves R.L., Chapman S.A., Alyokhin A., Kuhar T.P., Macrae I.V., Szendrei Z., Nault B.A. 2014. Managing Colorado potato beetle insecticide resistance: new tools and strategies for the next decade of pest control in potato. Journal of Integrated Pest Management 5 (4): 1–8. DOI: https://doi.org/10.1603/IPM140....
Mayr J., Grijalvo S., Bachl J., Pons R., Eritja R., Díaz Díaz D. 2017. Transfection of antisense oligonucleotides mediated by cationic vesicles based on non-ionic surfactant and polycations bearing quaternary ammonium moieties. International Journal of Molecular Sciences 18 (12): 1139. DOI: https://doi.org/10.3390/ijms18....
Oberemok V.V., Skorokhod O.A. 2014. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control. Pesticide Biochemistry and Physiology 113: 1–7. DOI: https://doi.org/10.1016/j.pest.... 2014.05.005.
Oberemok V.V., Laikova K.V., Zaitsev A.S., Gushchin V.A., Skorokhod O.A. 2016a. The RING for gypsy moth control: Topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide. Pesticide Biochemistry and Physiology 131: 32–39. DOI: https://doi.org/10.1016/j.pest....
Oberemok V.V., Laikova K.V., Zaitsev A.S., Gushchin V.A., Skorokhod O.A. 2016b. Data for increase of Lymantria dispar male survival after topical application of single-stranded RING domain fragment of IAP-3 gene of its nuclear polyhedrosis virus. Data in Brief 7: 514–517. DOI: https://doi.org/10.1016/j.dib.....
Oberemok V.V., Laikova K.V., Zaitsev A.S., Shumskykh M.N., Kasich I.N., Gal’chinsky N.V., Bekirova V.V., Makarov V.V., Agranovsky A.A., Gushchin V.A., Zubarev I.V., Kubyshkin A.V., Fomochkina I.I., Gorlov M.V., Skorokhod O.A. 2017a. Molecular alliance of Lymantria dispar multiple nucleopolyhedrovirus and a short unmodified antisense oligonucleotide of its anti-apoptotic IAP-3 gene: a novel approach for gypsy moth control. International Journal of Molecular Sciences 18 (12): 2446. DOI: https://doi.org/10.3390/ijms18....
Oberemok V.V., Laikova K.V., Zaitsev A.S., Nyadar P.M., Gninenko Yu. I., Gushchin V.A., Makarov V.V., Agranovsky A.A. 2017b. Topical treatment of LdMNPV-infected gypsy moth caterpillars with 18 nucleotides long antisense fragment from LdMNPV IAP-3 gene triggers higher level of apoptosis in the infected cells and mortality of the pest. Journal of Plant Protection Research 57 (1): 18–24. DOI: https://doi.org/10.1515/jppr-2....
Schultz S.J., Champoux J.J. 2008. RNase H activity: Structure, specificity, and function in reverse transcription. Virus Research 134 (1–2): 86–103. DOI: https://doi.org/10.1016/j.viru....
Toth P.P. 2011. Antisense therapy and emerging applications for the management of dyslipidemia. Journal of Clinical Lipidology 5 (6): 441–449. DOI: https://doi.org/10.1016/j.jacl....
Zhu F., Moural T.W., Nelson D.R., Palli S.R. 2016. A specialist herbivore pest adaptation to xenobiotics through up-regulation of Multiple Cytochrome P450s. Scientific Reports 6 (1): 20421. DOI: https://doi.org/10.1038/srep20....