ORIGINAL ARTICLE
A strategy of chemical control of Apera spica-venti L. resistant to sulfonylureas traced on the molecular level
 
More details
Hide details
1
Faculty of Horticulture, Biotechnology and Landscape Architecture, Section of Basic Natural Sciences in Horticulture, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
2
DuPont de Nemours (France) S.A.S., 23/25, rue Delarivière-Lefoullon, La Défense 9, F-92800 Puteaux, France
CORRESPONDING AUTHOR
Marta Stankiewicz-Kosyl
Faculty of Horticulture, Biotechnology and Landscape Architecture, Section of Basic Natural Sciences in Horticulture, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
Submission date: 2016-03-06
Acceptance date: 2017-04-06
 
Journal of Plant Protection Research 2017;57(2):113–119
KEYWORDS
TOPICS
ABSTRACT
Three populations of silky bent grass (Apera spica-venti L.) were tested – one that is susceptible and two that are resistant to sulfonylureas. This study assessed the efficacy of control by different herbicides in a pot experiment and estimated the molecular status of resistance to sulfonylureas in analysed populations and its effect on the efficacy of different chemical treatments. The three most effective herbicide rotation schemes were: 1) chlorsulfuron + isoproturon, ethametsulfuron + metazachlor + quinmerac, chlorsulfuron + isoproturon; 2) prosulfocarb + diflufenican, ethametsulfuron + quizalofop-p-ethyl, prosulfocarb + diflufenican; 3) diflufenican + flufenacet, quizalofop-p-ethyl, diflufenican + flufenacet. In most cases it was more difficult to destroy 100% of the resistant population from Modgarby where the majority of plants had no mutation in the als gene. In the resistant population from Babin there were signifi cantly more individuals with mutation in the als gene, therefore exhibiting target-site resistance.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (21)
1.
Beckie H.J., Tardif F.J. 2012. Herbicide cross resistance in weeds. Crop Protection 35: 15–28. DOI: 10.1016/j.cropro.2011.12.018.
 
2.
Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19 (1): 11–15.
 
3.
Delye C. 2013. Unravelling the genetic basis of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Management Science 69 (2): 176–187. DOI: 10.1002/ps.3318.
 
4.
Delye C., Deulvot C., Chauvel B. 2013b. DNA analysis of herbarium specimens of the grass weed Alopecurus myosuroides reveals herbicide resistance pre-dated herbicides. PLoS ONE 8 (10): e75117. DOI: https://doi.org/10.1371/journa....
 
5.
Delye C., Jasieniuk M., Le Corre V. 2013a. Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics 29 (11): 649–658. DOI: https://doi.org/10.1016/j.tig.....
 
6.
Duhoux A., Carrere S., Duhoux A., Delye C. 2017. Transcriptional markers enable identifi cation of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Science 257: 22–36. DOI: https://doi.org/10.1016/j.plan....
 
7.
Hamouzova K., Kosnarova P., Salava J., Soukup J., Hamouz P. 2014. Mechanisms of resistance to acetolactate synthase-inhibiting herbicides in populations of Apera spica-venti from Czech Republic. Pest Management Science 70 (4): 541–548. DOI: https://doi.org/10.1002/ps.356....
 
8.
Han H., Yu Q., Owen M., Cawthray G.R., Powles S.B. 2016. Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations. Pest Management Science 72 (2): 255–263. DOI: https://doi.org/10.1002/ps.399....
 
9.
Heap I.M. 2017. International Survey of Herbicide Resistant Weeds. Available on: http://www.weedscience.org. [Accessed: March 2, 2017].
 
10.
Krysiak M., Gawronski S.W., Adamczewski K., Kierzek R. 2011. Als gene mutations in Apera spica-venti confer broad-range resistance to herbicides. Journal of Plant Protection Research 51 (3): 261–267. DOI: https://doi.org/10.2478/v10045....
 
11.
Mahmood K., Mathiassen S.K., Kristensen M., Kudsk P. 2016. Multiple herbicide resistance in Lolium multiflorum and identifi cation of conserved regulatory elements of herbicide resistance genes. Frontiers in Plant Science 7: 1160. DOI: https://doi.org/10.3389/fpls.2....
 
12.
Massa D., Krenz B., Gerhards R. 2011. Target-site resistance to ALS-inhibiting herbicides in Apera spica-venti populations is conferred by documented and previously unknown mutations. Weed Research 51 (3): 294–303. DOI: https://doi.org/10.1111/j.1365....
 
13.
Petersen J., Naruhn G., Raffel H. 2012. Non target-site resistance inherent in Alopecurus myosuroides and Apera spica-venti – resistance pattern and factors. Julius-Kuhn--Archiv 434: 43–50. DOI: https://www.cabdirect.org/cabd....
 
14.
Powles S.B., Yu Q. 2010. Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology 61 (1): 317–347. DOI: https://doi.org/10.1146/annure....
 
15.
Preston C., Powles S.B. 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum. Heredity 88 (1): 8–13. DOI: https://doi.org/10.1038/sj.hdy....
 
16.
Rola H., Marczewska K. 2002. Sulfonylurea herbicide resistant biotype of weeds in Wroclaw Region. Progress in Plant Protection 42: 575–577.
 
17.
Rosenhauer M., Sievernich B., Petersen J. 2014. Impact of imazamox containing herbicides on the development of resistance in black-grass (Alopecurus myosuroides Huds.). Julius-Kuhn-Archiv 443: 252–260. DOI: 10.5073/jka.2014.443.031.
 
18.
Stankiewicz-Kosyl M., Wrochna M., Nowak P., Popek R., Salas M., Gawronski S.W. 2013. Effect of herbicide combinations on biotypes of wind bentgrass (Apera spica-venti) sensitive and resistant to sulfonureas. Annales COLUMA 2013: 612–617.
 
19.
Yu Q., Han H., Powles S. 2008. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Management Science 64 (12): 1229–1236. DOI: https://doi.org/10.1002/ps.162....
 
20.
Yu Q., Han H., Powles S. 2014. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiology 166 (3): 1106–1118. DOI: https://doi.org/10.1104/pp.114....
 
21.
Yu Q., Powles S.B. 2014. Resistance to AHAS inhibitor herbicides: current understanding. Pest Management Science 70 (9): 1340–1350. DOI: https://doi.org/10.1002/ps.371....
 
eISSN:1899-007X
ISSN:1427-4345