ORIGINAL ARTICLE
Figure from article: Smart sprayer for weed...
 
HIGHLIGHTS
  • Variable rate pesticide application reduces pollution and costs.
  • Using convolutional neural network is promising for accurate detection of weed.
  • Variable rate sprayer can result in reasonable spray parameters such as coverage, droplet density, and deposition.
KEYWORDS
TOPICS
ABSTRACT
Spraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to develop robotic sprayers that can apply pesticides at variable rates as needed in the field. In this study, a remotely controlled sprayer with two modes (variable rate and constant rate applications) was developed and evaluated for some spray characteristics and application accuracy metrics when controlling weeds at two travel speeds. The variable rate mode resulted in a high precision, recall, and accuracy in detecting weed and applying herbicide that was 90%, 100%, and 94%, respectively. Moreover, the spray coverage, droplet density, and the deposition on weed using the variable rate mode were 34.16%, 127.64 deposites ∙ cm–2, and 7.67 μl ∙ cm–2, respectively. The result also revealed that the spray coverage, droplet density, and the deposition were less sensitive to the travel speed when adopting the variable rate mode compared to the constant rate mode.
RESPONSIBLE EDITOR
Zbigniew Czaczyk
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (46)
1.
Adamczewski K., Matysiak K., Kierzek R., Kaczmarek S. 2019. Significant increase of weed resistance to herbicides in Poland. Journal of Plant Protection Research 59 (2): 139–150. DOI: https://doi.org/10.24425/jppr.....
 
2.
Al-Chalabi F.T., Hammood W.F. 2016a. Effect of integrated weed management on fiber quality characters of some cotton cultivars. Iraqi Journal of Agricultural Sciences 47 (1): 187–196. DOI: https://doi.org/10.36103/ijas.....
 
3.
Al-Chalabi F.T., Hammood W.F. 2016b. Response of growth analysis parameters of some cotton cultivars to integrated weed management. Iraqi Journal of Agricultural Sciences 47 (1): 197–207. DOI: https://doi.org/10.36103/ijas.....
 
4.
Al-Khafaji Mustafa.J., Safi S.M.A., Hammood W.F. 2023. Effect of herbicides on growth, grain yield and quality of barley. Iraqi Journal of Agricultural Sciences 54 (4): 1094–1100.
 
5.
Al-khazali A.J., Shati R.K. 2016. Effect of some new herbicides on the competition ability to seven maize cultivars (Zea mays L. ) on the weed accompanying. Iraqi Journal of Agricultural Sciences 47 (2): 425–437. DOI: https://doi.org/10.36103/ijas.....
 
6.
Al-Mahmood A.M., Shahadi H.I., Khayeat A.R.H. 2022. Classifying Infected Palms with Dubas’s Bug Based on Artificial Intelligence. p. 1–6. In: “International Conference on Electrical, Computer, and Energy Technologies, ICECET 2022”. 20–22 July 2022, Prague, Czech Republic. DOI: https://doi.org/10.1109/ICECET....
 
7.
Anon, n.d. YOLO v5 model architecture [Explained]. [Available on: https://iq.opengenus.org/yolov...]. [Accessed on: 23 September 2023].
 
8.
Aravind R., Daman M., Kariyappa B.S. 2016. Design and development of automatic weed detection and smart herbicide sprayer robot. p. 257–261. In: “2015 IEEE Recent Advances in Intelligent Computational Systems, RAICS 2015”. 2016. DOI: https://doi.org/10.1109/RAICS.....
 
9.
Bakhshipour A., Jafari A. 2018. Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Computers and Electronics in Agriculture 145: 153–160. DOI: https://doi.org/10.1016/j.comp....
 
10.
Chandel N.S., Chakraborty S.K., Rajwade Y.A., Dubey K., Tiwari M.K., Jat D. 2021. Identifying crop water stress using deep learning models. Neural Computing and Applications 33 (10): 5353–5367. DOI: https://doi.org/10.1007/s00521....
 
11.
Coleman G., Salter W., Walsh M. 2022. Open Weed Locator (OWL): an open-source, low-cost device for fallow weed detection. Scientific Reports 12 (1): 1–12. DOI: https://doi.org/10.1038/s41598....
 
12.
Cunha M., Carvalho C., Marcal A.R.S. 2012. Assessing the ability of image processing software to analyse spray quality on water-sensitive papers used as artificial targets. Biosystems Engineering 111 (1): 11–23. DOI: https://doi.org/10.1016/j.bios....
 
13.
Dian Bah M., Hafiane A., Canals R. 2018. Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote Sensing 10 (11): 1690. DOI: https://doi.org/10.3390/rs1011....
 
14.
Farooque A.A., Hussain N., Schumann A.W., Abbas F., Afzaal H., McKenzie-Gopsill A., Esau T., Zaman Q., Wang X. 2023. Field evaluation of a deep learning-based smart variable-rate sprayer for targeted application of agrochemicals. Smart Agricultural Technology 3: 100073.
 
15.
Ferguson J.C., Chechetto R.G., Hewitt A.J., Chauhan B.S., Adkins S.W., Kruger G.R., O’Donnell C.C. 2016. Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Protection 81: 14–19. DOI: https://doi.org/10.1016/j.crop....
 
16.
Ghadi N.M., Salman N.H. 2022. Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review. Journal of Engineering 28 (12): 93–112. DOI: https://doi.org/10.31026/j.eng....
 
17.
Hunter J.E., Gannon T.W., Richardson R.J., Yelverton F.H., Leon R.G. 2020. Coverage and drift potential associated with nozzle and speed selection for herbicide applications using an unmanned aerial sprayer. Weed Technology 34 (2): 235–240. DOI: https://doi.org/10.1017/wet.20....
 
18.
Hussain A., Barua B., Osman A., Abozariba R., Asyhari A.T. 2021a. Low Latency and Non-Intrusive Accurate Object Detection in Forests. p. 1–6. In: “2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 – Proceedings.” 2021. DOI: https://doi.org/10.1109/SSCI50....
 
19.
Hussain N., Farooque A.A., Schumann A.W., Abbas F., Acharya B., McKenzie-Gopsill A., Barrett R., Afzaal H., Zaman Q.U., Cheema M.J.M. 2021b. Application of deep learning to detect Lamb’s quarters (Chenopodium album L.) in potato fields of Atlantic Canada. Computers and Electronics in Agriculture 182: 106040. DOI: https://doi.org/10.1016/j.comp....
 
20.
Idziak R., Waligóra H., Szuba V. 2022. The influence of agronomical and chemical weed control on weeds of corn. Journal of Plant Protection Research 62 (2): 215–222. DOI: https://doi.org/10.24425/jppr.....
 
21.
Konar J., Khandelwal P., Tripathi R. 2020. Comparison of Various Learning Rate Scheduling Techniques on Convolutional Neural Network. p. 1–5. In: “2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science, SCEECS”. 22–23 Feb. 2020, Bhopal, India. DOI: https://doi.org/10.1109/SCEECS....
 
22.
Kulkarni S., Angadi S.A., Belagavi V.T.U. 2019. IoT based weed detection using image processing and CNN. International Journal of Engineering Applied Sciences and Technology 4 (3): 606–609.
 
23.
Marangoni Junior A., da Costa Ferreira M. 2019. Influence of working pressure and spray nozzle on the distribution of spray liquid in manual backpack sprayers. Arquivos do Instituto Biológico 86: 1–9. DOI: https://doi.org/10.1590/1808-1....
 
24.
Marwan I., Subr A. 2022. Developing and testing of automated sprayer for agrochemicals application trials in Iraq. Muthanna Journal for Agricultural Sciences 9 (1): 10–24. DOI: https://doi.org/10.52113/mjas0....
 
25.
Milanowski M., Subr A., Combrzyński M., Różańska-Boczula M., Parafiniuk S. 2022. Effect of adjuvant, concentration and water type on the droplet size characteristics in agricultural nozzles. Applied Sciences (Switzerland) 12 (12): 5821. DOI: https://doi.org/10.3390/app121....
 
26.
Muhammad M.N., Wayayok A., Mohamed Shariff A.R., Abdullah A.F., Husin E.M. 2019. Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Computers and Electronics in Agriculture 167: 105045. DOI: https://doi.org/10.1016/j.comp....
 
27.
Nyarko B.N.E., Bin W., Jinzhi Z., Odoom J. 2023. Tomato fruit disease detection based on improved single shot detection algorithm. Journal of Plant Protection Research 63 (4): 405–417. DOI: https://doi.org/10.24425/jppr.....
 
28.
Pannacci E., Bartolini S. 2018. Evaluation of chemical weed control strategies in biomass sorghum. Journal of Plant Protection Research 58 (4): 404–412. DOI: https://doi.org/10.24425/jppr.....
 
29.
Parafiniuk S., Milanowski M., Subr A.K. 2015. The influence of the water quality on the droplet spectrum produced by agricultural nozzles. Agriculture and Agricultural Science Procedia 7: 203–208. DOI: https://doi.org/10.1016/j.aasp....
 
30.
Parafiniuk S., Milanowski M., Subr A., Krawczuk A. 2017. Influence of surface tension of water on droplet size produced by flat jet nozzles: 295–300. DOI: https://doi.org/10.24326/fmpms....
 
31.
Partel V., Charan Kakarla S., Ampatzidis Y. 2019a. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Computers and Electronics in Agriculture 157: 339–350. DOI: https://doi.org/10.1016/j.comp....
 
32.
Partel V., Kim J., Costa L., Pardalos P., Ampatzidis Y. 2019b. Smart Sprayer for Precision Weed Control Using Artificial Intelligence: Comparison of Deep Learning Frameworks. ISAIM (pp. 101-105).
 
33.
Qin W.C., Qiu B.J., Xue X.Y., Chen C., Xu Z.F., Zhou Q.Q. 2016. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection 85: 79–88. DOI: https://doi.org/10.1016/j.crop....
 
34.
Shah T.M., Nasika D.P.B., Otterpohl R. 2021. Plant and weed identifier robot as an agroecological tool using artificial neural networks for image identification. Agriculture (Switzerland) 11 (3): 222. DOI: https://doi.org/10.3390/agricu....
 
35.
Subeesh A., Bhole S., Singh K., Chandel N.S., Rajwade Y.A., Rao K.V.R., Kumar S.P., Jat D. 2022. Deep convolutional neural network models for weed detection in polyhouse grown bell peppers. Artificial Intelligence in Agriculture 6: 47–54. DOI: https://doi.org/10.1016/j.aiia....
 
36.
Subr A., Al-Ahmadi A., Abbas M. 2020. Effect of nozzle type and some locally used surfactants on the spray quality. Iraqi Journal of Agricultural Sciences 51 (3): 856–864. DOI: https://doi.org/10.36103/ijas.....
 
37.
Subr A., Parafiniuk S., Milanowski M., Krawczuk A., Kachel M. 2020a. Study of deposited spray quality of spraying agents with different physical properties. Plant Archives 20 (2): 6109–6114.
 
38.
Subr A., Parafiniuk S., Milanowski M., Krawczuk A., Kachel M. 2020b. Study of deposited spray quality of spraying agents with different physical properties. Plant Archives 20 (2): 6109–6114.
 
39.
Sujaritha M., Annadurai S., Satheeshkumar J., Kowshik Sharan S., Mahesh L. 2017. Weed detecting robot in sugarcane fields using fuzzy real time classifier. Computers and Electronics in Agriculture 134: 160–171. DOI: https://doi.org/10.1016/j.comp....
 
40.
Urmashev B., Buribayev Z., Amirgaliyeva Z., Ataniyazova A., Zhassuzak M., Turegali A. 2021. Development of a weed detection system using machine learning and neural network algorithms. Eastern-European Journal of Enterprise Technologies 6 (2): 70–85. DOI: https://doi.org/10.15587/1729-....
 
41.
Veisi M., Zand E., Moeini M.M., Bassiri K. 2020. Review of research on weed management of chickpea in Iran: Challenges, strategies and perspectives. Journal of Plant Protection Research 60 (2): 113–125. DOI: https://doi.org/10.24425/jppr.....
 
42.
Villette S., Maillot T., Guillemin J.P., Douzals J.P. 2021. Simulation-aided study of herbicide patch spraying: Influence of spraying features and weed spatial distributions. Computers and Electronics in Agriculture 182: 105981. DOI: https://doi.org/10.1016/j.comp....
 
43.
Wang P., Tang Y., Luo F., Wang L., Li C., Niu Q., Li H. 2022. Weed25: A deep learning dataset for weed identification. Frontiers in Plant Science 13: 1053329. DOI: https://doi.org/10.3389/fpls.2....
 
44.
Zhang P., Deng L., Lyu Q., He S.L., Yi S.L., De Liu Y., Yu Y.X., Pan H.Y. 2016. Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution. International Journal of Agricultural and Biological Engineering 9 (4): 45–52. DOI: https://doi.org/10.3965/j.ijab....
 
45.
Zhu H., Liu H., Shen Y., Liu H., Zondag R.H. 2017. Spray deposition inside multiple-row nursery trees with a laser-guided sprayer. Journal of Environmental Horticulture 35 (1): 13–23. DOI: https://doi.org/10.24266/0738-....
 
46.
Zhu H., Salyani M., Fox R.D. 2011. A portable scanning system for evaluation of spray deposit distribution. Computers and Electronics in Agriculture 76 (1): 38–43. DOI: https://doi.org/10.1016/j.comp....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top