ORIGINAL ARTICLE
A comparative study of the antifungal activity of silver nanoparticles prepared from Moringa oleifera and Spirulina platensis extracts against Aspergillus parasiticus isolated from Egyptian wheat grains
 
 
 
More details
Hide details
1
Botany and Microbiology, Faculty of Science, University of Damietta, New Damietta, Egypt
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-06-15
 
 
Acceptance date: 2024-08-20
 
 
Online publication date: 2025-09-17
 
 
Corresponding author
Zakaria Awad Baka   

Botany and Microbiology, Faculty of Science, University of Damietta, New Damietta, Egypt
 
 
 
HIGHLIGHTS
  • A. parasiticus was morphologically and molecularly identified
  • AgNPs were biosynthesized from M. oleifera and S. platensis extracts
  • Phenolic compounds in S. platensis were higher than those in M. oleifera.
  • A. parasiticus isolates showed higher amounts of AFB1 than AFB2
  • The antifungal activity of AgNPs was studied against the fungus by SEM and TEM
KEYWORDS
TOPICS
ABSTRACT
This work aimed to investigate the in vitro antifungal capability of silver nanoparticles (AgNPs) that were biosynthesized from extracts of two bioagents (Moringa oleifera and Spirulina platensis) against Aspergillus parasiticus attained from Egyptian wheat grains. Aspergillus parasiticus exhibited the most established species, additionally, the metabolite of isolate 3 generated a better quantity of Aflatoxin B1 (899.8 μg · l-1). AgNPs prepared from bioagent extracts inhibited the fungal mycelia and spore germination, even though S. platensis extract was more potent. The extract of S. platensis confirmed 22 phenolic compounds, with epicatechin (3455.9 μg · g-1 DW) recording the largest quantity. In evaluation, M. oleifera leaf extract revealed the existence of 16 phenolic compounds, with chlorogenic acid verifying the very best degree (3250.9 μg · g-1 DW). Fungal mycelia treated with 10% AgNPs showed intense deformation in comparison to the control, as found through scanning and transmission electron microscopy.
RESPONSIBLE EDITOR
Piotr Iwaniuk
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (74)
1.
Abdalla A., Stellmacher T., Becker M. 2023. Trends and prospects of change in wheat self-sufficiency in Egypt. Agriculture 13 (7): 1–12. DOI: https://doi.org/10.3390/agricu....
 
2.
Abdelaziz A.M., Dacrory S., Hashem A.H., Attia M.S., Hasanin M., Fouda H.M., Kamel S., ElSaied H. 2021. Protective role of zinc oxide nanoparticles-based hydrogel against wilt disease of pepper plant. Biocatalysis and Agricultural Biotechnology 35: 102083. DOI: https://doi.org/10.1016/j.bcab....
 
3.
Abdel-Moneim A.E., El-Saadony M.T., Shehatan A.M., Saad A.M., Aldhumri S.A., Ouda S.M., Mesalam N.M. 2022. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences 29 (2): 1197–1209. DOI: https://doi.org/10.1016/j.sjbs....
 
4.
Akbari B., Baghaei-Yazdi N., Bahmaie M., Abhari F.M. 2022. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 48 (3): 611–633. DOI: https://doi.org/10.1002/biof.1....
 
5.
Al Aboody M.S. 2019. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica latex and its antibiofilm activity against fluconazole resistant Candida tropicalis. Artificial Cells Nanomedicine Biotechnology 47: 2107–2113. DOI: http://doi.org/10.1080/2169140....
 
6.
Al-Ghanayem A.A. 2017. Antimicrobial activity of Spirulina platensis extracts against certain pathogenic bacteria and fungi. Advances in Bioresearch 8 (6): 96–101. DOI: https://doi.org/10.15515/abr.0....
 
7.
Al-Otibi F., Alfuzan S.A., Alharbi R.I., Al-Askar A.A., Al-Otaibi R.M., Al Subaie H.F., Moubayed N.M. 2022. Comparative study of antifungal activity of two preparations of green silver nanoparticles from Portulaca oleracea extract. Saudi Journal of Biological Sciences 29: 2772–2781. DOI: https://doi.org/10.1016/j.sjbs....
 
8.
Badmus J., Oyemomi S., Adedosu O., Yekeen T., Azeez M., Adebayo E., Lateef A., Badeggi U., Botha S., Hussein A. 2020. Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: Exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon 6: e05413. DOI: https://doi.org/10.1016/j.heli....
 
9.
Baka Z.A., El-Zahed M.M. 2022. Antifungal activity of silver/silicon dioxide nanocomposite on the response of faba bean plants (Vicia faba L.) infected by Botrytis cinerea. Bioresources and Bioprocessing 9 (102): 1–19. DOI: https://doi.org/10.1186/s40643....
 
10.
Baka Z.A.M., El-Zahed M.M. 2023. Phenolic acids and defense-related enzymes in host-pathogen interaction in Senecio aegyptius and the rust fungus, Puccinia lagenophorae. Archives of Phytopathology and Plant Protection 56: 721–752. DOI: https://doi.org/10.1080/032354....
 
11.
Banerjee P., Satapathy M., Mukhopahayay A., Das P. 2014. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources Bioprocessing 1 (3): 1–10. DOI: https://doi.org/10.1186/s40643....
 
12.
Bernatoniene J., Kopustinskiene D.M. 2018. The role of catechins in cellular responses to oxidative stress. Molecules 23 (4): 965. DOI: https://doi.org/10.3390/molecu....
 
13.
Bessey E.A. 2020. Morphology and Taxonomy of Fungi. Alpha Publishing, Delaware, USA, 806 pp.
 
14.
Bintvihok A., Treebonmuang S., Srisakwattana K., Nuanchun W., Patthanachai K., Usawang S. 2016. A rapid and sensitive detection of aflatoxin-producing fungus using an optimized polymerase chain reaction (PCR). Toxicology Research 32: 81–87. DOI: https://doi.org/10.5487/TR.201....
 
15.
Chaturvedi V., Verma P. 2015. Fabrication of silver nanoparticles from leaf extract of Butea monosperma (Flame of Forest) and their inhibitory effect on bloom-forming cyanobacteria. Bioresources and Bioprocessing 2 (18): 1–8. DOI: https://doi.org/10.1186/s40643....
 
16.
Dakal T.C., Kumar A., Majumdar R.S., Yadav V. 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology 7 (1831): 1–17. DOI: https://doi.org/10.3389/fmicb.....
 
17.
de Almeida A.R., da Silva I.C., de Souza C.A.P., Avelino J.R.L., Santos J.E.C.C., de Medeiros E.V., Pinto K. M.S. 2021. Plant extract as a strategy for the management of seed pathogens: a critical review. Research, Society and Development 10 (14): e174101421846. DOI: http://doi.org/10.33448/rsd-v1....
 
18.
Dhakad A.K., Ikram M., Sharma S., Khan S., Pandey V.V., Singh A. 2019. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytotherapy Research 33 (11): 2870–2903. DOI: https://doi.org/10.1002/ptr.64....
 
19.
Dragoni-Rosado, J.1., González-Mederos A.1., Sambolín-Pérez C. 2022. Effect of silver nanoparticles on the growth of Colletotrichum spp. and Nigrospora sp. Fungal Biotechnology 2 (1): 1–9. DOI: https://doi.org/10.5943/FunBio....
 
20.
El-Batal A.I., El-Sayed M.H., Refaat B.M., Askar A.A. 2014. Marine Streptomyces cyaneus strain alex-sk121 mediated eco-friendly synthesis of silver nanoparticles using gamma radiation. Journal of Pharmaceutical Research International 4 (21): 2525–2547. DOI: https://doi.org/10.9734/BJPR/2....
 
21.
Gao J., Yang M. J., Xie Z., Lu B.H., Hsiang, T., Liu L.P. 2021. Morphological and molecular identification and pathogenicity of Alternaria spp. associated with ginseng in Jilin province, China. Canadian Journal of Plant Pathology 43 (4): 537–550. DOI: https://doi.org/10.1080/070606....
 
22.
Górniak I., Bartoszewski R., Króliczewski J. 2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemical Review 18: 241–272. DOI: https://doi.org/10.1007/s11101....
 
23.
Gumustas M., Sengel-Turk C.T, Gumustas A., Ozkan S.A, Uslu B. 2017. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. p. 67–108. In: “Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics” (A.M. Grumezescu, ed.). Elsevier, Amsterdam, The Netherlands, 356 pp.
 
24.
Guzmán C., Ibba M.I., Álvarez J.B., Sissons M., Morris C. 2022. Wheat quality. p. 177–193. In: “Wheat Improvement: Food Security in a Changing Climate” (M.P. Reynolds, H.J. Braun, eds.). Springer, Cham, 629 pp. DOI: https://doi.org/10.1007/978-3-....
 
25.
Hasanin M., Elbahnasawy M.A., Shehabeldine A.M., Hashem A.H. 2021. Ecofriendly preparation of silver nanoparticles-based nanocomposite stabilized by polysaccharides with antibacterial, antifungal and antiviral activities. Biometals 34 (6): 1313–1328. DOI: https://doi.org/10.1007/s10534....
 
26.
Hashem A.H., Saied E., Amin B.H., Alotibi F.O., Al-Askar A.A., Arishi A.A., Elkady F.M., Elbahnasawy M.A. 2022. Antifungal activity of biosynthesized silver nanoparticles (AgNPs) against Aspergilli causing Aspergillosis: Ultrastructure study. Journal of Functional Biomaterials 13 (242): 1–17. DOI: https://doi.org/10.3390/jfb130....
 
27.
Hendricks K.E., Christman M.C., Roberts P.D. 2017. A statistical evaluation of methods of in vitro growth assessment for Phyllosticta citricarpa: Average colony diameter vs. area. PLoS One 12 (1): e0170755. DOI: https://doi.org/10.1371/journa....
 
28.
Hervay N.T., Elias D., Habova M., Jacko J., Morvova Jr. M., Gbelska Y. 2023. Catechin potentiates antifungal effect of miconazole in Candida glabrata. Folia Microbiologica 68: 835–842. DOI: https://doi.org/10.1007/s12223....
 
29.
Hidayati J.R., Yudiati E., Pringgenies D., Oktaviyanti D.T., Alief Putri Kusuma A.P. 2020. Comparative study on antioxidant activities, total phenolic compound and pigment contents of tropical Spirulina platensis, Gracilaria arcuata and Ulva lactuca extracted in different solvents polarity. E3S Web of Conferences 147: 03012. DOI: https://doi.org/10.1051/e3scon....
 
30.
Igrejas G., Branlard G. 2020. The importance of wheat. p. 1–7. In: “Wheat Quality For Improving Processing And Human Health” (G. Igrejas, T. Ikeda, C. Guzmán, eds.). Springer, Cham, 554 pp. DOI: https://doi.org/10.1007/978-3-....
 
31.
Ilyas S., Manohara D. 2023. Seed-borne mycoflora and their management. p. 29–46. In: “Plant Mycobiome: Diversity, Interactions and Uses” (Y.M. Rashad, Z.A.M. Baka, T.A.A. Moussa, eds.) Springer, Cham, 496 pp. DOI: https://doi.org/10.1007/978-3-....
 
32.
Ismail M. A., Abdel-Hafez S.I.I., Hussein N.A., Abdel-Hameed N.A. 2015. Contributions to the Genus Fusarium in Egypt with Dichotomous Keys for Identification of Species. Tomasz M. Karpiński ul. Szkółkarska 88B, 62-002 Suchy Las, Poland, 175 pp.
 
33.
Jain N. 2023. Spirulina: The future food. Modern Concepts and Developments in Agronomy 12 (3): 1190–1191. DOI: https://doi.org/10.31031/MCDA.....
 
34.
Khalid S., Arshad M., Mahmood S., Ahmed W., Siddique F., Khalid W., Zarlasht M., Asar T.O., Hassan F.A.M. 2023. Nutritional and phytochemical screening of Moringa oleifera leaf powder in aqueous and ethanol extract. International Journal of Food Properties 26 (1): 2338–2348. DOI: https://doi.org/10.1080/109429....
 
35.
Khalil Y.M.M., Abd El-Ghani S.S., Mansour T.G.I. 2020. A standard analysis of Egyptian foreign trade structure for wheat. Bulletin of the National Research Centre 44 (20): 1–7. DOI: https://doi.org/10.1186/s42269....
 
36.
Khan I., Saeed K., Khan I. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12 (7): 908–931. DOI: https://doi.org/10.1016/j.arab....
 
37.
Khan M.A., Hafeez M., Zaheer M. Hameed U. 2022. Microscopic and biochemical identification of Spirulina spp. for its biomass cultivation by using different types of photobioreactors at lab and pilot scale. Pakistan Journal of Biochemistry and Biotechnology 3 (2): 123–131. DOI: https://doi.org/10.52700/pjbb.....
 
38.
Khatami M., Pourseyedi S., Khatami M., Hamidi H., Mehrnaz Zaeifi M., Soltani L. 2015. Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresources and Bioprocessing 2 (19): 1–7. DOI: https://doi.org/10.1186/s40643....
 
39.
Kimanya M.E., Routledge M.N., Mpolya E., Ezekiel C.N., Shirima C.P., Gong Y.Y. 2021. Estimating the risk of aflatoxin-induced liver cancer in Tanzania based on biomarker data. PLoS ONE 16 (3): e0247281. DOI: https://doi.org/10.1371/journa....
 
40.
Kumar A., Dixit C.K. 2017. Methods for characterization of nanoparticles. p. 43–59. In: “Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids” (S. Nimesh, R. Chandra, N. Gupta, eds.), Elsevier: Amsterdam, The Netherlands, 256 pp.
 
41.
Lara H.H., Romero-Urbina D.G., Pierce C., Lopez-Ribot J.L., Arellano-Jiménez M.J., Jose-Yacaman M. 2015. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. Journal of Nanobiotechnology 13 (91): 1–12. DOI: https://doi.org/ 10.1186/s12951-015-0147-8.
 
42.
Llorent-Martínez E.J, Ortega-Barrales P., Zengin G., Mocan A., Simirgiotis M.J., Ceylan R., Uysal S., Aktumsek A. 2017. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry. Food and Chemical Toxicology 107 (Pt B): 609–619. DOI: https://doi.org/10.1016/j.fct.....
 
43.
Lobiuc A., Paval N.E., Mangalagiu I.I., Gheorghita R., Teliban G.C., Amariucai-Mantu D., Stoleru V. 2023. Future antimicrobials: Natural and Functionalized Phenolics. Molecules 28 (1114): 1–16. DOI: https://doi.org/10.3390/molecu....
 
44.
Mahmood G., Hawar S.N. 2022. Green biosynthesis of silver nanoparticles from Moringa oleifera leaves and its antimicrobial and cytotoxicity activities. International Journal of Biomaterials 2022: 1–10. DOI: https://doi.org/10.1155/2022/4....
 
45.
Martínez G., Regente M., Jacobi S., Del Rio M., Pinedo M., Laura de la Canal L. 2017. Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry and Physiology 140: 30–35. DOI: https://doi.org/10.1016/j.pest....
 
46.
Medda S., Hajra A., Dey U., Bose P., Mondal N.K. 2015. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience 5: 875–880. DOI: https://doi.org/10.1007/s13204....
 
47.
Molina-Hernández J.B., Scroccarello A., Pelle F.D., De Flaviis R., Compagnone D., Del Carlo M., Paparella A., Clemencia Chaves Lόpez C.C. 2022. Synergistic antifungal activity of catechin and silver nanoparticles on Aspergillus niger isolated from coffee seeds. LWT 169: 113990. DOI: https://doi.org/10.1016/j.lwt.....
 
48.
Neves A.C., Viana A.D., Menezes F.G., Neto A.O.W., Melo M.C.N., Gasparotto L.H. 2021. Biospectroscopy and chemometrics as an analytical tool for comparing the antibacterial mechanism of silver nanoparticles with popular antibiotics against Escherichia coli. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 253: 119558. DOI: https://doi.org/10.1016/j.saa.....
 
49.
Nyongesa B.W., Okoth S., Ayugi V. 2015. Identification Key for Aspergillus species isolated from maize and soil of Nandi County, Kenya. Advances in Microbiology 5: 205–229. DOI: https://doi.org/10.4236/aim.20....
 
50.
Pagnussatt F.A., de Lima V.R., Dora C.L., Costa J.A.V., Putaux J-L., Badiale-Furlong E. 2016. Assessment of the encapsulation effect of phenolic compounds from Spirulina sp. LEB-18 on their antifusarium activities. Food Chemistry 211: 616–623. DOI: https://doi.org/10.1016/j.food....
 
51.
Panwar R.S., Pervaiz N., Dhillon G., Kumar S., Sharma N., Aggarwal N., Tripathi S., Kumar R., Vashisht A., Kumar N. 2022. Mangifera indica leaf extract assisted biogenic silver nanoparticles potentiates photocatalytic activity and cytotoxicity. Journal of Materials Science: Materials in Electronics 33 (2):1-12. DOI: https://doi.org/10.1007/s10854....
 
52.
Patil S.V., Mohite B.V., Marathe K.R., Salunkhe N.S., Marathe V., Patil V.S. 2022. Moringa tree, gift of nature: a review on nutritional and industrial potential. Current Pharmacological Reports 8: 262–280. DOI: https://doi.org/10.1007/s40495....
 
53.
Rahimi S., Sohrabi N., Ebrahimi M.A., Tebyanian M., Taghizadeh M., Rahimi S. 2016. Application of PCR in the detection of aflatoxinogenic and non-aflatoxinogenic strains of Aspergillus parasiticus group of cattle feed isolated in Iran. Journal of Molecular Biology Research 6 (1): 121–128. DOI: https://doi.org/10.5539/jmbr.v....
 
54.
Rhimi W., Aneke C.I., Annoscia G., Otranto D., Boekhout T., Claudia Cafarchia C. 2020. Effect of chlorogenic and gallic acids combined with azoles on antifungal susceptibility and virulence of multidrug-resistant Candida spp. and Malassezia furfur isolates. Medical Mycology 58 (8): 1091–1101. DOI: https://doi.org/10.1093/mmy/my....
 
55.
Salem S.S., Ali O.M., Reyad A.M., Abd-Elsalam K.A., Amr H., Hashem A.H. 2022. Pseudomonas indica-mediated silver nanoparticles: Antifungal and antioxidant biogenic tool for suppressing mucormycosis fungi. Journal of Fungi 8 (126): 1–13. DOI: https://doi.org/10.3390/jof802....
 
56.
Sallam N.M.A., Ali E.F., Abo-Elyousr K.A.M., Bereika M.F.F., Seleim M.A.A. 2021. Thyme oil treatment controls bacterial wilt disease symptoms by inducing antioxidant enzyme activity in Solanum tuberosum. Journal of Plant Pathology 103 (2): 563–572. DOI: https://doi.org/10.1007/s42161....
 
57.
Salleh A., Naomi R., Utami N.D., Mohammad A.W., Mahmoudi E., Mustafa N., Fauzi M.B. 2020. The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials 10 (8): 1566. DOI: https://doi.org/10.3390/nano10....
 
58.
Shabeer S., Asad S., Jamal A., Ali A. 2022. Aflatoxin contamination, its impact and management strategies: An updated review. Toxins 14 (5): 307. DOI: https://doi.org/10.3390/toxins....
 
59.
Schmidt M., Horstmann S., De Colli L., Danaher M., Speer K., Zannini E., Arendt E.K. 2016. Impact of fungal contamination of wheat on grain quality criteria. Journal of Cereal Science 69: 95–103. DOI: https://doi.org/10.1016/j.jcs.....
 
60.
Schoss K., Glavac N.K., Koce J.D., Anžlovar S. 2022. Supercritical CO2 plant extracts show antifungal activities against crop-borne fungi. Molecules 27 (3): 1132. DOI: https://doi.org/10.3390/molecu....
 
61.
Shishido T.K., Humisto A., Jokela J., Liwei Liu L., Wahlsten M., Tamrakar A., Fewer D.P., Permi P., Andreote A.P.D., Fiore M.F., Kaarina Sivonen K. 2015. Antifungal compounds from cyanobacteria. Marine Drugs 13 (4): 2124–2140. DOI: https://doi.org/10.3390/md1304....
 
62.
Sidorowicz A., Margarita V., Fais G., Pantaleo A., Manca A., Concas A., Rappelli P., Fiori P.L., Giacomo C. 2022. Characterization of nanomaterials synthesized from Spirulina platensis extract and their potential antifungal activity. PloS ONE 17 (9): e0274753. DOI: https://doi/org/10.1371/journa....
 
63.
Sindhu R.K., Kaur P., Kaur P., Singh H., Batiha G.E., Verma I. 2022. Exploring multifunctional antioxidants as potential agents for management of neurological disorders. Environmental Science of Pollution Research International 29 (17): 24458–24477. DOI: https://doi.org/10.1007/s11356....
 
64.
Singh H., Du J., Singh P., Yi T.H. 2018. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artificial Cells Nanomedicine and Biotechnology 46 (6): 1163–1170. DOI: https://doi.org/10.1080/216914....
 
65.
Soni R.A., Sudhakar K., Rana S.R.S. 2019. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports 5: 327–336. DOI: https://doi.org/10.1016/j.egyr....
 
66.
Tang G., Xu Y., Zhang C., Wang N., Li H., Feng Y. 2021. Green tea and epigallocatechin gallate (EGCG) for the management of nonalcoholic fatty liver diseases (NAFLD): Insights into the role of oxidative stress and antioxidant mechanism. Antioxidants 10 (7): 1076. DOI: https://doi.org/10.3390/antiox....
 
67.
Tangaa S.R., Selck H., Winther-Nielsen M., Khan F.R. 2016. Trophic transfer of metal-based nanoparticles in aquatic environments: A review and recommendations for future research focus. Environmental Science Nano 3: 966–981. DOI: https://doi.org/10.1039/C5EN00....
 
68.
Trombete F.M., Santos T.B., Direito G.M., Fraga M.E., Saldanha T. 2014. In-house validation of a method for determining aflatoxins B1, B2, G1 and G2 in wheat and wheat by-products. Pesquisa Agropecuaria Tropical 44: 255–262. DOI: https://doi.org/10.1590/S1983-....
 
69.
Torres C.A., Zamora C.M.P., Nuñez M.B., Gonzalez A.M. 2018. In vitro antioxidant, antilipoxygenase and antimicrobial activities of extracts from seven climbing plants belonging to the Bignoniaceae. Journal of Integrative Medicine 16: 255–262. DOI: https://doi.org/10.1016/j.joim....
 
70.
Usha S., Ramappa K.T., Hiregoudar S., Vasanthkumar G.D., Aswathanarayana D.S. 2017. Biosynthesis and characterization of copper nanoparticles from tulasi (Ocimum sanctum L.) leaves. International Journal of Current Microbiology and Applied Sciences 6 (11): 2219–2228. DOI: https://doi.org/10.20546/ijcma....
 
71.
Wanga P., Changb P.K., Konga Q., Shanc S., Weib Q. 2019. Comparison of aflatoxin production of Aspergillus parasiticus at different temperatures and media: Proteome analysis based on TMT. International Journal of Food Microbiology 310: 108313. DOI: https://doi.org/10.1016/j.ijfo....
 
72.
Yadav S., Goswami P., Mathur J. 2023. Evaluation of fungicidal efficacy of Moringa oleifera Lam. leaf extract against Fusarium wilt in wheat. Journal of Natural Pesticide Research. 4: 100034. DOI: https://doi.org/10.1016/j.nape....
 
73.
Yan A., Chen Z. 2019. Impacts of silver nanoparticles on plants: A Focus on the Phytotoxicity and underlying mechanism. International Journal of Molecular Sciences 20 (5):1003. DOI: https://doi.org/10.3390/ijms20....
 
74.
Zanganeh E., Mirzaei H., Jafari S.M., Javadi A., Afshar Mogaddam M.R. 2022. Spirulina platensis extract nanoliposomes: Preparation, characterization, and application to white cheese. Journal of AOAC International 105: 827–834. DOI: https://doi/org/10.1093/jaoaci....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top