Biocontrol of chickpea Fusarium wilt by Bacillus spp. rhizobacteria
More details
Hide details
Laboratoire de Recherche sur les Systèmes Biologiques et la Géomatique, Université de Mascara, P.O. Box 305, Algeria
Laboratory of Microbial Engineering, Bioconversion and Health Safety, University of Mascara, P.O. Box 305, Mascara, Algeria
Laboratoire de microbiologie, Faculté des Sciences, Université de Mostaganem, Algeria
Souad Zaim
Laboratoire de Recherche sur les Systèmes Biologiques et la Géomatique, Université de Mascara, P.O. Box 305, Algeria
Submission date: 2013-01-25
Acceptance date: 2013-04-05
Journal of Plant Protection Research 2013;53(2):177–183
Among 131 rhizobacteria isolates, 29 potentially antagonistic strains were screened in in vitro assays. The five antagonistic Bacillus spp. Rb29, Rb6, Rb12, Rb4, and Rb15 showed the most inhibitory effect against FOC1 (from 25.63 to 71.11%), mycelial growth, and FOC2 (from 28.43 to 60.65%) in vitro. Results also revealed that production of volatile metabolite, components and inhibition of the test pathogen by volatile metabolites varied among different antagonistic rhizobacteria. Isolates Rb29, Rb6, Rb12, Rb4, and Rb15 produced more volatile metabolites which inhibited mycelial FOC growth by 40%. Chickpea Fusarium wilt severity caused by FOC1 was reduced from 60 to 99% in the susceptible cultivar ILC 482 treated with antagonistic Bacillus spp. (Rb29, Rb6, Rb12, Rb4, and Rb15) in pot assays and by 98, 81, 68, 64, 57.20%, respectively, in the field trials. As for their beneficial effects on disease control, the results revealed that Bacillus spp. may improve plant growth and disease control.
The authors have declared that no conflict of interests exist.
Chet I., Inbar J. 1994. Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48 (1): 37–43.
Choudhary D.K., Johri B.N. 2009. Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol. Res. 164 (5): 493–513.
Demoz B.T., Korsten L. 2006. Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol. Control 37 (1): 68–74.
Dileep Kumar B.S. 1999. Fusarial wilt suppression and crop improvement through two rhizobacterial strains in chickpea growing in soils infested with Fusarium oxysporum f. sp. ciceris. Biol. Fert. Soils 29 (1): 87–91.
Dowling D.N., O’Gara F. 1994. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 12 (Suppl. 4): 133–141.
Edwards S.G., McKay T., Seddon B. 1994. Interaction of Bacillus species with phytopathogenic fungi. Methods of analysis and manipulation for biocontrol purposes. p. 101–118. In: “Ecology of Plant Pathogens” (J.P. Blakeman, B. Williamson, eds). Wallingford, UK, CAB International, 384 pp.
El Aoufir A. 2001. Étude du Flétrissement Vasculaire du Pois Chiche (Cicer arietinum) Causé par le Fusarium oxysporum f. sp. ciceri. Evaluation de la Fiabilité de L’analyse Isoenzymatique et de la Compatibilité Végétative pour la Caractérisation des Races Physiologiques. Thèse de doctorat, Université Laval, Canada, 161 pp.
El Hassni M., El Hadrami A., Daayf F., Chérif M., Ait Barka E., El Hadrami I. 2007. Biological control of bayoud disease in date palm: selection of microorganisms inhibiting the causal agent and inducing defense reactions. Environ. Exp. Bot. 59 (2): 224–234.
Elad Y., Chet I., Katan J. 1980. Trichoderma harzianum: A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology 70 (2): 119–121.
Elad Y., Chet I. 1987. Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77: 190–195.
Fang Z.D. 1998. Plant Pathology Technology. 3rd ed. Beijing: Chinese Agriculture Press, 243 pp. (in Chinese).
Fiddaman P.J., Rossall S. 1995. Selection of bacterial antagonists for the biological control of Rhizocotonia solani in oilseed rape (Brassica napus). Plant Pathol. 44 (4): 695–703.
Földes T., Bànhegyi I., Herpai Z., Varga L., Szigeti J. 2000. Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food-borne pathogenic and spoilage micro-organisms. J. Appl. Microbiol. 89 (5): 840–846.
Gardener B.B.M. 2004. Ecology of Bacillus and Paenibacillus spp. Agricultural Systems Symposium the Nature and Application of Biocontrol Microbes: Bacillus spp. Phytopathology 94 (11): 1252–1258.
Gerhardson B. 2002. Biological substitutes for pesticides. Trends Biotechnol. 20 (8): 338–343.
Haas D., Defago G. 2005. Biological control of soil borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3 (4): 307–319.
Haware M.P. 1990. Fusarium wilt and other important diseases of chickpea in the Mediterranean area. Options Méditerranéennes, Série Séminaires 9: 61–64.
Holt J.G., Kreig N.R., Sneath P.H.A., Staley J.T., Williams S.T. 1994. Bergey’s Manual of Determinative Bacteriology. 9th ed. Williams & Wilkins, Baltimore, USA, 816 pp.
Idris H.A., Labuschagnea N., Korsten L. 2007. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol. Control. 40 (1): 97–106.
Jiménez-Gasco M.M., Navas-Cortés J.A., Jiménez-Díaz R.M. 2004. The Fusarium oxysporum f. sp. ciceris/Cicer arietinum pathosystem: a case study of the evolution of plant-pathogenic fungi into races and pathotypes. Int. Microbiol. 7 (2): 95–104.
Johri B.N., Sharma A., Virdi J.S. 2003. Rhizobacterial diversity in India and its influence on soil and plant health. Adv. Biochem. Eng./Biotechnol. 84: 49–89.
Kamilova F., Validov S., Azarova T., Mulders I., Lugtenberg B. 2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. 7 (11): 1809–1817.
Labdi M. 1990. Chickpea in Algeria. Options Méditerranéennes, Série Séminaires 9: 137–140.
Labdi M. 1995. Etude de la résistance à l’anthracnose (Ascochyta rabiei) chez le pois chiche (Cicer arietinum L.). Thèse de Doctorat, ENSA de Montpellier, France, 143 pp.
Pluvinage J. 1990. Chickpea in the Mediterranean production systems: two contrasting examples of possible developments in Algeria and France. Options Méditerranéennes, Série Séminaires 9: 133–136.
Landa B.B., Hervas A., Bethiol W., Jimenez-Diaz R.M. 1997. Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica 25 (4): 305–318.
Landa B.B., Navas-Cortés J.A., Hervás A., Jiménez-Díaz R.M. 2001. Influence of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris on suppression of Fusarium wilt of chickpea by rhizosphere bacteria. Phytopathology 91 (8): 807–816.
Landa B.B., Navas-Cortés J.A., Jiménez-Díaz R.M. 2004. Influence of temperature on plant–rhizobacteria interactions related to biocontrol potential for suppression of Fusarium wilt of chickpea. Plant. Pathol. 53: 341–352.
Loper J.E., Henkels M.D. 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl. Environ. Microbiol. 63 (1): 99–105.
Mashooda B., RavisankarRai V., Lokesh S. 2003. Effect of plant growth promoting rhizobacteria on seed borne fungal pathogens in okra. Indian Phytopathol. 56 (2): 156–158.
Milner J.L., Silo-Suh L., Lee J.C., He H., Clardy J., Handelsman J. 1996. Production of kanosamine by Bacillus cereus UW85. Appl. Environ. Microbiol. 62 (8): 3061–3065.
O’Sullivan D.J., O’Gara F. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662–676.
Reva O.N., Dixelius C., Meijer J., Priest F.G. 2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol. Ecol. 48 (2): 249–259.
Saharan B.S., Nehra V. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci. Med. Res. 2011, p. 21.
Sang M.K., Chiang M.H., Yi E.S., Park K.W., Kim K.D. 2006. Biocontrol of Korean ginseng root rot caused by Phytophthora cactorum using antagonistic bacterial strains ISE13 and KJ1R5. Plant. Pathol. J. 22 (1): 103–106.
Schmidt C.S., Agostini F., Leifert C., Killham K., Mullins C.E. 2004. Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of Pythium damping-off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis. Phytopathology 94 (4): 351–363.
Sneath P.H.A. 1986. Endospore forming Gram-positive rods and cocci. p. 1104–1137. In: “Bergey’s Manual of systematic Bacteriology” (N.R. Krieg, J.G. Holt, eds.). Vol 2, Williams and Wilken, Baltimore, MD, 2898 pp.
Suarez-Estrella F., Vargas-Garcia C., Lopez M.J., Capel C., Moreno J. 2007. Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop. Prot. 26 (1): 46–53.
Swain M.R., Ray R.C. 2007. Biocontrol and other beneficial activities of Bacillus subtilisisolated from cow dung microflora. Microbiol. Res. 164 (2): 121–130.
Villajuan-Abgona R., Kagayama K. Hyakumachi M. 1996. Biocontrol of Rhizoctonia damping-off of cucumber by non pathogenic binucleate Rhizoctonia. Eur. J. Plant Pathol. 102 (1996): 227–235.
Yadav J., Verma J.P., Tiwari K.N. 2011. Plant growth promoting activities of gungi and their effect on chickpea plant growth. Asian J. Biol. Sci. 4 (3): 291–299.
Yoshida S., Hiradate S., Tsukamoto T., Hatakeda K., Shirata A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91 (2): 181–187.
Yu G.Y., Sinclair J.B., Hartman G.L., Bertagnolli B.L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34 (7): 955–963.