ORIGINAL ARTICLE
Damping-off disease reduction using actinomycetes that produce antifungal compounds with beneficial traits
Umi Fatmawati 1, 2, B-D
,   Anja Meryandini 1, A,C,   Abdjad Asih Nawangsih 3, A,C,E,   Aris Tri Wahyudi 1, A,C,E-F  
 
More details
Hide details
1
Department of Biology, Bogor Agricultural University, Bogor, Indonesia
2
Biology Education Study Program, Sebelas Maret University, Surakarta, Indonesia
3
Department of Plant Protection, Bogor Agricultural University, Bogor, Indonesia
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Aris Tri Wahyudi   

Biology, Bogor Agricultural University, Jl. Agatis Kampus IPB, 16680, Bogor, Indonesia
Submission date: 2019-09-04
Acceptance date: 2020-02-04
Online publication date: 2020-07-10
 
Journal of Plant Protection Research 2020;60(3):233–243
 
KEYWORDS
TOPICS
ABSTRACT
Actinomycetes are considered to be the biggest producer of bioactive compounds which are expected to have antifungal activity for controlling many fungi such as Rhizoctonia solani. The objective of this study was to obtain potential soybean rhizosphere actinomycetes as a biocontrol agent for R. solani which cause damping-off disease both in vitro and in vivo, including their ability to produce siderophore, chitinase, and HCN. Out of 26 isolates, 18 (56%) showed diverse antifungal activities against R. solani with percentages of inhibition radial growth (PIRG) from 18.9 to 64.8%, as evaluated by a dual culture method. Ten isolates with the strongest antifungal activity were numbered for further characterization. All the tested isolates were not antagonistic towards Bradyrhizobium japonicum. These isolates were able to suppress damping-off disease caused by R. solani in the greenhouse experiment. Isolate ASR53 showed the highest disease suppression, 68% and 91% in sterile and non-sterile soil, respectively. Based on 16S rRNA sequence analysis this isolate belonged to Streptomyces violaceorubidus LMG 20319 (similarity 98.8%) according to GenBank data base available at www.ncbi.nlm.gov.nih. Furthermore, isolate ASR53 had significantly longer roots and shoots, as well as greater fresh and dry weights of seedlings than the control. Crude extract derived from ASR53 isolates contained 10 dominant compounds that were biologically active against fungal pathogens. Thus, this study suggests that the application of potential actinomycetes of the soybean rhizosphere can act as a promising biocontrol agent against damping-off disease caused by R. solani.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
FUNDING
This work was partially supported by the Ministry of Research, Technology, and Higher Education of Indonesia through “Penelitian Dasar Unggulan Perguruan Tinggi (PD-UPT)” 2018–2019 and Dissertation Research Grant from LPPM Sebelas Maret University 2017.
 
REFERENCES (39)
1.
Amini J., Agapoor Z., Ashengroph. 2016. Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt. Journal of Plant Protection Reserach 56 (3): 257–264. DOI: http://doi.org/10.1515/jppr-01....
 
2.
Anzaku A.A., Akyala J.I., Juliet A., Obianuju E.C. 2017. Antibacterial activity of lauric acid on some selected clinical isolates. Annals of Clinical and Laboratory Research 5 (2): 1–5. DOI: http://doi.org/10.21767/2386-5....
 
3.
Awla H.K., Kadir J., Othman R., Rashid T.S., Wong M.Y. 2016. Bioactive compounds produced by Streptomyces sp. isolate UPMRS4 and antifungal activity against Pyricularia oryzae. American Journal of Plant Science 7 (7): 1077–1085. DOI: http://doi.org/10.4236/ajps.20....
 
4.
Bonaldi M., Konova A., Sarrachi M., Sardi P., Cortesi P. 2014. Streptomycetes as biological control agents against basal drop. In: Proceedings of the VIII International Symposium on Chemical and Non-Chemical Soil and Substrate Disinfestation. Toryno, Italy, 13–17 July 2014, 313 pp.
 
5.
Costa F.G., Zucchi T.D., de Melo I.S. 2013. Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.). Brazilian Archives of Biology and Biotechnology 56 (6): 948–955. DOI: http://doi.org/10.1590S1516-89....
 
6.
Feng S., Shu C., Wang C., Jiang S., Zhou E. 2017. Survival of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight, under different environmental condition. Journal of Phytopathology 165 (1): 44–52. DOI: http://doi.org/10.1111jph.1253....
 
7.
Gonzales M., Pujol M., Metraux J.P., Garcia V.G., Bolton M.D., Hidalgo O.B. 2011. Tobacco leaf spot and root rot caused by Rhizoctonia solani Kühn. Molecular Plant Pathology 12 (3): 209–216. DOI: http://doi.org/10.1111/J.1364-....
 
8.
Gopalakrishnan S., Pande S., Sharma M., Humayun P., Kiran B.K., Sandeep D. 2011. Evaluation of aktinomisete isolates obtained from herbal vermicompost for biological control of Fusarium wilt of chickpea. Crop Protection 30: 1070–1078. DOI: http://doi.org/ 10.1016/j.cropro.2011.03.006.
 
9.
Goudjal Y., Yamoum M., Sabaou N., Mathieu F., Zitouni A. 2016. Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedling. Biocontrol Science and Technology 26 (12): 1691–1705. DOI: http://doi.org/10.1080/0958315....
 
10.
Hamdali H., Mursalou K., Tcjangbedji G., Ouhdouch Y., Hafidi. M. 2012. Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphate mine. African Journal of Biotechnology 11 (2): 312–320. DOI: http://doi.org/10.5897/AJB11.7....
 
11.
Hanif A., Soekarno B.P.W., Munif A. 2016. Selection of endophytic bacteria producing metabolite compound to control seedborne fungal pathogen of maize. Jurnal Fitopatologi Indonesia 12 (5): 149–158. DOI: http://doi.org/10.14692/jfi.12....
 
12.
Harsonowati W., Astuti R.I., Wahyudi A.T. 2017. Leaf blast disease reduction by rice-phyllosphere actinomycetes producing bioactive compounds. Journal of General Plant Pathology 83 (2): 98–108. DOI: http://doi.org/10.1007/s10327-....
 
13.
Helal I.M. 2017. Control of damping-off disease in some plants using environmentally biocide. Pakistan Journal of Botany 49 (1): 361–370.
 
14.
Huang X., Zhang N., Yong X., Yang X., Shen Q. 2012. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiology Research 167 (3): 135–143. DOI: http://doi.org/10.1016/j.micre....
 
15.
Kaur T., Kaur A., Sharma V., Manhas R.K. 2016. Purification and characterization of a new antifungal compound 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic acid methyl ester from Streptomyces hydrogenans strain DH16. Frontiers in Microbiology 7: 1004. DOI: http://doi.org/10.3389/fmicb.2....
 
16.
Khaeruni A., Rahman A. 2012. Utilization of chitinolitic bacteria as biocontrol agent of stem rot disease by Rhizoctonia solani on soybean. Jurnal Fitopatologi Indonesia 8 (2): 37–43. DOI: http://doi.org/10.14692/jfi.8.....
 
17.
Khamna S., Yokota A., Peberdy J.F., Lumyong S. 2010. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. Eurasian Journal of Bioscience 4 (1): 23–32. DOI: http://doi.org/10.5053ejobios.....
 
18.
Kiran G.S., Priyadharsini S., Sajayan A., Ravindran A., Selvin J. 2018. An antibiotic agent pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Advances 8 (32): 17837–17846. DOI: http://doi.org/10.1039/C8RA008....
 
19.
Leung Y.Y., Hui L.L.Y., Kraus V.B. 2015. Colchicine-update on mechanisms of action and therapeutic uses. Seminars in Arthritis Rheumatism 45 (3): 341–350. DOI: http://doi.org/10.1016/j.semar....
 
20.
Lyu A., Liu H., Che H., Yang L., Zhang J., Wu M., Chen W., Li G. 2017. Reveromycins A and B from Streptomyces sp. 3–10: Antifungal activity against plant pathogenic fungi in vitro and in a strawberry food model system. Frontiers in Microbiology 8: 550. DOI: http://doi.org/10.3389/fmicb.2....
 
21.
Mahmood T., Mehnaz S., Fleischemann F., Ali R., Hashmi Z.H., Iqbal Z. 2014. Soil sterilization effects on root growth and formation of rhizo sheaths in wheat seedlings. Pedobiologia-Journal of Soil Ecology 57 (3): 123–130. DOI: http://doi.org/10.1016/j.pedob....
 
22.
Martina K., Jan K., Tamas F., Ladislav C., Marek O., Genevieve L.G., Yvan M.L., Marketa S.M. 2008. Development of a 16S rRNA gene-based prototype microarray for the detection of selected actinomycetes genus. Antonio Van Leeuwenhoek 94: 439–453. DOI: http://doi.org/10.1007/s10482-....
 
23.
Mishra P.K., Gogoi R., Singh P.K., Rai S.N., Singode A., Kumar A., Manjunatha C. 2014. Morpho-cultural and pathogenic variability in Rhizoctonia solani isolates from rice, maize and green gram. Indian Phytopathology 67 (2): 147–154.
 
24.
Mohammed G.J., Al-Jasani M.J., Hameed I.H. 2016. Anti-bacterial, antifungal activity and chemical analysis of Punica grantanum (Pomegranate peel) using GC-MS and FTIR spectroscopy. International Journal of Pharmacognosy and Phytochemical Research 8 (3): 480–494.
 
25.
Palaniyandi S.A., Yang S.H., Zhang L., Suh J.W. 2016. Effects of actinobacteria on disease suppression and growth promotion. Applied Microbiology and Biotechnology 97 (22): 9621–9636. DOI: http://doi.org/10.1007/s00253-....
 
26.
Prapagdee B., Kuekulvong C., Mongkolsuk S. 2008. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Science 4 (5): 330–337. DOI: http://doi.org/10.7150/ijbs.4.....
 
27.
Ratnakomala S., Lisdiyanti P., Prayitno N.R., Triana E., Lestari Y., Hastuti R.D., Widyastuti Y., Otoguro M., Ando K., Sukara E. 2016. Diversity of actinomycetes from Eka Karya botanical garden, Bali. Biotropia 23 (1): 42–51. DOI: http://doi.org/10.11598/btb.20....
 
28.
Retnowati Y., Sembiring L., Moeljopawiro S., Djohan T.S., Soetarto E.S. 2017. Diversity of antibiotic-producing Actinomycetes in mangrove forest of Torosiaje, Gorontalo, Indonesia. Biodiversitas 18 (3): 1453–1461. DOI: http://doi.org/10.13057/biodiv....
 
29.
Sadeghi A., Hesan A.R., Askari H., Qomi D.N., Farsi M., Hervan E.M. 2009. Biocontrol of Rhizoctonia solani damping-off of sugar beet with native Streptomyces strains under field conditions. Biocontrol Science and Technology 19 (9): 985–991. DOI: http://doi.org/10.1080/0958315....
 
30.
Ser H.L., Palanisamy U.D., Yin W.F., Abd Malek S.N., Chan K.G., Goh B.H. 2015. Presence of antioxidative agent, pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Frontiers in Microbiology 20 (6): 854. DOI: http://doi.org/10.3389/fmicb.2....
 
31.
Shimizu M. 2011. Endophytic actinomycetes: biocontrol agents and growth promoters. p. 201–220. In: “Bacteria in Agrobiology: Plant Growth Responses” (D.K. Maheshwari, ed.). Springer, Heidelberg, Dordrecht, London, UK.
 
32.
Shivalee A., Lingappa K., Mahesh D. 2018. Influence of bioprocess variables on the production of extracellular chitinase under submerged fermentation by Streptomyces pratensis strain KLSL55. Journal of Genetic Engineering and Biotechnology 16 (2): 421–426. DOI: http://doi.org/10.1016/j.jgeb.....
 
33.
Shreevidya M., Gopalakrishnan S., Kudapa H., Varshney N.K. 2016. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian Journal of Microbiology 47 (1): 85–95. DOI: http://doi.org/10.1016/j.bjm.2....
 
34.
Shou Q., Banbury L.K., Renshaw D.E., Lambley E.H., Mon H., Macfarlane G.A., Griesser H.J., Heinrich M.M., Wohlmuth H. 2012. Biologically active dibenzofurans from Pilidiostigma glabrum, an endemic Australian Myrtaceae. Journal of Natural Product 75 (9): 1612–1617. DOI: http://doi.org/10.1021/np30043....
 
35.
Susilowati A., Wahyudi A.T., Lestari Y., Suwanto A., Wiyono S. 2011. Potential Pseudomonas isolated from soybean rhizosphere as biocontrol against soilborne phytopathogenic fungi. Hayati Journal of Bioscience 18 (2): 51–56. DOI: http://doi.org/10.4308/hjb.18.....
 
36.
Tokala R.K., Strap J.L., Jung C.M. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology 68 (5): 2161–2171. DOI: http://doi.org/10.1128/aem.68.....
 
37.
Walters D.R., Walker R.L., Walker K.C. 2003. Lauric acid exhibits antifungal activity against plant pathogenic fungi. Journal of Phytopathology 151 (1): 228–230. DOI: http://doi.org/10.1046/j.1439-....
 
38.
Wiraswati S.M., Rusmana I., Nawangsih A.A., Wahyudi A.T. 2019. Antifungal activity of bacteria producing bioactive compound isoated from rice phyllosphere against Pyricularia oryzae. Journal of Plant Protection Research 59 (1): 86–94. DOI: http://doi.org/10.24425/jppr.2....
 
39.
Zanatta Z.G.C.N., Moura A.B., Maia L.C., dos Santos A.S. 2007. Bioassay for selection of biocontroller bacteria against bean common blight (Xanthomonas axonopodis pv. phaseoli). Brazilian Journal of Micobiology 38 (3): 511–515. DOI: http://doi.org/10.1590/S1517-8....
 
eISSN:1899-007X
ISSN:1427-4345