ORIGINAL ARTICLE
Determination of optimal doses of glyphosate for controlling weeds at several stages in southwestern Buenos Aires province (Argentina)
 
More details
Hide details
1
Center of Renewable Natural Resources of the Semiarid Zone (CERZOS), National University of the South (UNS), The National Research Council of Argentina (CONICET), Carrindanga Road Km 7, Bahía Blanca, Argentina
2
Biology Department, National University of the South, 670 San Juan Street, 8000, Bahía Blanca, Argentina
3
Agronomy Department, National University of the South, 800 San Andres Street, 8000, Bahía Blanca, Argentina
CORRESPONDING AUTHOR
Diego Javier Bentivegna
Center of Renewable Natural Resources of the Semiarid Zone (CERZOS), National University of the South (UNS), The National Research Council of Argentina (CONICET), Carrindanga Road Km 7, Bahía Blanca, Argentina
Submission date: 2017-07-27
Acceptance date: 2017-10-06
 
Journal of Plant Protection Research 2017;57(4):347–353
 
KEYWORDS
TOPICS
ABSTRACT
Efficient weed management is essential for avoiding competition for water, light, and nutrient resources in semiarid zones. Chemical weed control with glyphosate was evaluated on perennial wall-rocket (Diplotaxis tenuifolia), artichoke thistle (Cynara cardunculus), slender wild oat (Avena barbata), and perennial ryegrass (Lolium perenne). Plants at early, middle and advanced vegetative stages were used in this study. Glyphosate potassium salt was applied at rates of 0.0675 (1/16x), 0.135 (1/8x), 0.27 (1/4x), 0.54 (1/2x), 1.08 (x) and 2.16 (2x) kg acid equivalent (ae) ⋅ ha–1. Glyphosate combined with 2,4-D amine salt was evaluated at rates of 1.08 kg ae ⋅ ha–1 and 0.53 kg active ingredient (ai) ⋅ ha–1, respectively. The volume of the spray was 100 l ⋅ ha–1 with 86 droplets ⋅ cm–2 and a Volume Median Diameter (VMD) of 421.19 μm. In general, all the tested weeds were controlled with a quarter of the label rate. Three sizes of tested plants were controlled in a similar way at the same glyphosate dose rate. Moreover, the addition of 2,4-D to glyphosate did not produce an increase in the control of broadleaf weeds. The results showed that glyphosate was effective in controlling the tested weed species, including low application rates for all the growth stages in the southwestern Buenos Aires province.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (29)
1.
Abramoff M.D., Magalhaes P.J., Ram S.J. 2004. Image processing with Image. Journal of Biophotonics International 11: 36–42.
 
2.
Adkins S.W., Tanpipat S., Swarbrick J.T., Boersma M. 1998. Influence of environmental factors on glyphosate efficacy when applied to Avena fatua or Urochloa panicoides. Weed Research 38:129–138. DOI: https://doi.org/10.1046/j.1365....
 
3.
Alvarez R., Steinbach H.S. 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research 104: 1–15.
 
4.
Baylis A.D. 2000. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Management Science 56 (4): 299–308.
 
5.
Blackshaw R.E., Harker K. 2002. Selective weed control with glyphosate in glyphosate-resistant spring wheat (Triticum aestivum). Weed Technology 16 (4): 885–892.
 
6.
Boutin C., Aya K.L., Carpenter D., Thomas P.J., Rowland O. 2012. Phytotoxicity testing for herbicide regulation: shortcomings in relation to biodiversity and ecosystem services in agrarian systems. Science of the Total Environment 415: 79–92. DOI: https://doi.org/10.1016/j.scit....
 
7.
Di Rienzo J.A., Casanoves F., Balzarini M.G., González L., Tablada M., Robledo C.W. 2015. INFOSTAT, versión 2015. Grupo Infostat, FCA. Universidad Nacional de Córdoba, Argentina.
 
8.
Eerens H., Mellsop J. 2008. Matching herbicide application rates with the environmental conditions and growth stages of nodding thiste (Carduus nutans) and hairy buttercup (Ranunculus sardous) in pastures. Weed Biology and Management 8 (3): 209–214.
 
9.
Esehaghbeygi A., Tadayyon A., Besharati S. 2011. Effect of droplet size on weed control in wheat. Journal of Plant Protection Research 51 (1): 18–22.
 
10.
Fish J.C., Webster E.P., Blouin D.C., Bond J.A. 2015. Imazethapyr co-application interactions in imidazolinone-resistant rice. Weed Technology 29 (4): 689–696.
 
11.
Flint J.L., Barrett M. 1989. Effect of glyphosate combinations with 2,4-D or dicamba on field bindweed (Convolvulus arvensis). Weed Science 37 (1): 12–18.
 
12.
Ganie Z.A., Jugulam M., Jhala A.J. 2017. Temperature influences efficacy, absorption, and translocation of 2,4-D or glyphosate in glyphosate-resistant and glyphosate-susceptible common ragweed (Ambrosia artemisiifolia) and giant ragweed (Ambrosia trifida). Weed Science 65 (5): 588–602.
 
13.
Gigón R., Lageyre E., Vigna M., López R., Coria M., Labarthe F. 2009. Relación costo/beneficio en el control químico de Diplotaxis tenuifolia L. y Centaurea solstitialis L. en una pastura degradada de alfalfa (Medicago sativa L.) del Sudoeste Bonaerense [Cost/benefit relationship in the chemical control of Diplotaxis tenuifolia L. and Centaurea solstitialis L. in a degraded pasture of alfalfa (Medicago sativa L.) of the Southwest of Buenos Aires.] Anales de la XL Reunión de la Asociación Argentina de Economía Agraria, CD – ISSN 1666-0285, Libro de Resúmenes y www.aaea.org.ar, Bahía Blanca. (in Spanish).
 
14.
Istilart C., Yanniccari M. 2013. Análisis de la evolución de las malezas en cereales de invierno durante 27 años en la zona sur de la pampa húmeda argentina [Analysis of the evolution of weeds in winter crop for 27 years in the southern part of the Argentine humid pampa]. Actualización técnica en cultivos de cosecha fina 2012/13, 113. (in Spanish).
 
15.
Juan V.F., Irigoyen J.H., Orioli G.A. 1995. Effect of post-emergence graminicides on the control of Avena fatua. Planta Daninha 13: 10–13.
 
16.
Kelly M., Pepper A. 1996. Controlling Cynara cardunculus (Artichoke Thistle, Cardoon, etc.). Proceedings of California Exotic Pest Plant Council. 4–6 October, Handlery Hotel, San Diego, California, USA.
 
17.
Knoche M. 1994. Effect of droplet size and carrier volumen on performance of foliage-applied herbicides. Crop Protection 13 (3): 163–178.
 
18.
Lamberto S.A., Valle A.F., Aramayo E.M., Andrada A.C. 1997. Manual Ilustrado de las Plantas Silvestres de la Región de Bahía Blanca [Illustrated Manual of Wild Plants of the Bahía Blanca Region]. Departamento de Agronomia, Universidad Nacional del Sur, Bahia Blanca, Argentina, 548 pp. (in Spanish).
 
19.
Monk D.W., Halcomb M.A., Ashburn E.L. 1991. Survey and control of musk thistle (Carduus nutans) in Tennessee field nurseries. Weed Technology 5 (1): 218–220. DOI: https://doi.org/10.1017/S08900...
 
20.
Paoloni J.D. 2010. Ambientes y recursos naturales del partido de Bahía Blanca: clima, geomorfología, suelos, y aguas [Environments and natural resources of the Bahía Blanca county: Climate, geomorphology, soils, and waters]. 1ª ed EdiUNS. Bahía Blanca. Unversidad Nacional del Sur, 242 pp. (in Spanish).
 
21.
Puricelli E., Faccini D. 2009. Efecto de la dosis de glifosato sobre la biomasa de malezas de barbecho al estado vegetativo y reproductivo [Effect of the dose of glyphosate on the biomass of fallow weeds to the vegetative and reproductive state]. Planta Daninha 27 (2): 303–307. (in Spanish).
 
22.
Schuster C.L., Shoup D.E., Al-Khatib K. 2007. Response of common lambsquarters (Chenopodium album) to glyphosate as affected by growth stage. Weed Science 55 (2): 147–151. DOI: http://doi.org/10.1614/WS-06-1....
 
23.
Scursoni J.A., Gigón R., Martín A.M., Vigna M., Leguizamón E.S., Istilart C., López R. 2014. Changes in weed communities of spring wheat crops of Buenos Aires province, Argentina. Weed Science 62 (1): 51–62.
 
24.
Seefeldt S.S., Jensen J.E., Fuerst E.P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technology 9 (2): 218–227. DOI: https://doi.org/10.1017/S08900...
 
25.
Shuma J.M., Quick W.A., Raju M.V.S., Hsiao A.I. 1995. Germination of seeds from plants of Avena fatua L. treated with glyphosate. Weed Research 35: 249–255. DOI: http://doi.org/10.1111/j.1365-....
 
26.
Skelton J.J., Ma R., Riechers D.E. 2016. Waterhemp (Amaranthus tuberculatus) control under drought stress with 2,4-dichlorophenoxyacetic acid and glyphosate. Weed Biology and Management 16 (1): 34–41. DOI: http://doi.org/10.1111/wbm.120....
 
27.
Vigna M.R., Lopez R.L., Gigón R., Mendoza J. 2008. Estudios de curvas dosis-respuesta de poblaciones de Lolium multiflorum a glifosato en el SO de Buenos Aires, Argentina [Studies of dose-response curves of populations of Lolium multiflorum to glyphosate in the SW of Buenos Aires]. p. 1–11. In: Proceedings of the XXVI Brazilian Weed Congress and Latin-American Weed Congress, Ouro Presto, MG Brasil. (in Spanish).
 
28.
Yanniccari M. 2014. Estudio fisiológico y genético de biotipos de Lolium perenne L. resistentes a glifosato [Physiological and genetic study of glyphosate-resistant Lolium perenne L. biotypes]. Ph.D. thesis, University of La Plata, Argentina, 239 pp.
 
29.
Zhu H., Salyani M., Fox R.D. 2011. A portable scanning system for evaluation of spray deposit distribution. Computer and Electronics in Agriculture 76 (1): 38–43.
 
eISSN:1899-007X
ISSN:1427-4345