ORIGINAL ARTICLE
Fine mapping of high-temperature adult-plant resistance to stripe rust in wheat cultivar Louise
Taras Nazarov 1, A-D
,  
Xianming Chen 1, 2, E-F
,  
Arron Carter 3, B,E
,  
Deven See 1, A,E-F  
 
 
More details
Hide details
1
Department of Plant Pathology, Washington State University, Washington, United States
2
Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, United States
3
Department of Crop and Soil Sciences, Washington State University, Washington, United States
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Deven See   

Department of Plant Pathology, Washington State University, Johnson Hall, 99164, Pullman, United States
Online publication date: 2020-04-20
Submission date: 2019-08-27
Acceptance date: 2019-11-20
 
Journal of Plant Protection Research 2020;60(2):126–133
KEYWORDS
TOPICS
ABSTRACT
Bread wheat is a major food crop on a global scale. Stripe rust, caused by Puccinia striiformis f. sp. tritici, has become one of the largest biotic stresses and limitations for wheat production in the 21st century. Post 2000 races of the pathogen are more virulent and able to overcome the defense of previously resistant cultivars. Despite the availability of effective fungicides, genetic resistance is the most economical, effective, and environmentally friendly way to control the disease. There are two major types of resistance to stripe rust: all-stage seedling resistance (ASR) and adult-plant resistance (APR). Although both resistance types have negative and positive attributes, ASR generally is race-specific and frequently is defeated by new races, while APR has been shown to be race non-specific and durable over time. Finding genes with high levels of APR has been a major goal for wheat improvement over the past few decades. Recent advancements in molecular mapping and sequencing technologies provide a valuable framework for the discovery and validation of new sources of resistance. Here we report the discovery of a precise molecular marker for a highly durable type of APR – high-temperature adult-plant (HTAP) resistance locus in the wheat cultivar Louise. Using a Louise × Penawawa mapping population, coupled with data from survey sequences of the wheat genome, linkage mapping, and synteny analysis techniques, we developed an amplified polymorphic sequence (CAPS) marker LPHTAP2B on the short arm of wheat chromosome 2B, which cosegregates with the resistant phenotype. LPHTAP2B accounted for 62 and 58% of phenotypic variance of disease severity and infection type data, respectively. Although cloning of the LPHTAP2B region is needed to further understand its role in durable resistance, this marker will greatly facilitate incorporation of the HTAP gene into new wheat cultivars with durable resistance to stripe rust.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (40)
1.
Carter A.H., Chen X.M., Garland-Campbell K., Kidwell K.K. 2009. Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f. sp. tritici) in the spring wheat (Triticum aestivum L.) cultivar ‘Louise’. Theoretical and Applied Genetics 119: 1119–1128. DOI: 10.1007/s00122-009-1114-2.
 
2.
Cavanagh C.R., Chao S., Wang S., Huang B.E., Stephen S., Kiani S., et al. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America 110: 8057–8062. DOI: 10.1073/pnas.1217133110.
 
3.
Chen J., Chu C., Souza E.J., Guttieri M.J., Chen X., Xu S., Hole D., Zemetra R. 2012. Genome-wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Molecular Breeding 29: 791–800. DOI: 10.1007/s11032-011-9590-x.
 
4.
Chen X.M. 2005. Epidemiology and control of stripe rust (Puccinia striiformis f. sp . tritici) on wheat. Canadian Journal of Plant Pathology 27: 314–337. DOI: 10.1071/ar07045.
 
5.
Chen X.M. 2013. High-temperature adult-plant resistance, key for sustainable control of stripe rust. American Journal of Plant Sciences 4: 608–627. DOI: 10.4236/ajps.2013.43080.
 
6.
Chen X.M. 2014. Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Canadian Journal of Plant Pathology 36: 311–326. DOI: 10.1080/07060661.2014.924560.
 
7.
Chen X.M., Penman L., Wan A.M., Cheng P. 2010. Virulence of races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Canadian Jouranl of Plant Pathology 32: 315–333. DOI: 10.1080/07060661.2010.499271.
 
8.
Collard B.C.Y., Jahufer M.Z.Z., Brouwer J.B., Pang E.C.K. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169–196. DOI: 10.1007/s10681-005-1681-5.
 
9.
Ellis J.G., Lagudah E.S., Spielmeyer W., Dodds P.N. 2014. The past, present and future of breeding rust resistant wheat. Frontiers is Plant Science 5: 641. DOI: 10.3389/fpls.2014.00641.
 
10.
Guo Q., Zhang Z.J., Xu Y.B., Li G.H., Feng J., Zhou Y. 2008. Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f. sp. tritici in wheat cultivars. Phytopathology 98: 803–809. DOI: 10.1094/PHYTO-98-7-0803.
 
11.
Han D., Kang Z., Wu J., Wang Q., Liu S., Huang S., Mu J., Zeng Q., Huang L., Han D., Kang Z. 2017. Saturation mapping of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar Napo 63 using SNP genotyping arrays. Frontiers is Plant Science 8: 653. DOI: 10.3389/fpls.2017.00653.
 
12.
Hou L., Jia J., Zhang X., Li X., Yang Z., Ma J., Guo H., Zhan H., Qiao L., Chang Z. 2016. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Disease 100 (8): 1717–1724. DOI: https://doi.org/10.1094/pdis-0....
 
13.
Johnson R. 1981. Durable resistance: definition of, genetic control, and attainment in plant breeding. Phytopathology 71: 567–568. DOI: 10.1094/Phyto-71-567.
 
14.
Jones J.D.G., Dangl J.L. 2006. The plant immune system. Nature 444: 323–329. DOI:10.1038/nature05286.
 
15.
Kawasaki T., Henmi K., Ono E., Hatakeyama S., Iwano M., Satoh H., Shimamoto K. 1999. The small GTP-binding protein Rac is a regulator of cell death in plants. Plant Biology 96: 10922–10926. DOI: 10.1073/pnas.96.19.10922.
 
16.
Kidwell K.K., Shelton G.B., Demacon V.L., Burns J.W., Carter B.P., Chen X.M., Morris C.F., Bosque Pérez N.A. 2006. Registration of ‘Louise’ wheat. Crop Science 46: 1384–1386. DOI: 10.2135/cropsci2005.06-0176.
 
17.
Krattinger S.G., Lagudah E.S., Spielmeyer W., Singh R.P., Huerta-Espino J., McFadden H., Bossolini E., Selter L.L., Keller B. 2009. A Putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323: 1360–1363. DOI: 10.1126/science.1166453.
 
18.
Lan C., Liang S., Zhou X., Zhou G., Lu Q., Xia X., He Z. 2010. Identification of genomic regions controlling adultplant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Phytopathology 100: 313–318. DOI: 10.1094/PHYTO-100-4-0313.
 
19.
Line R.F. 2002. Stripe rust of wheat and barley in North America: a retrospective historical review. Annual Reviews of Phytopathology 40: 75–118. DOI: 10.1146/annurev.phyto.40.020102.111645.
 
20.
Maccaferri M., Zhang J., Bulli P., Abate Z., Chao S., Cantu D., Bossolini E., Chen X., Pumphrey M., Dubcovsky J. 2015. A Genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 Genes|Genomes|Genetics 5: 449–465. DOI: 10.1534/g3.114.014563.
 
21.
Mallard S., Gaudet D., Aldeia A., Abelard C., Besnard A.L., Sourdille P., Dedryver F. 2005. Genetic analysis of durable resistance to yellow rust in bread wheat. Theoretical and Applied Genetics 110: 1401–1409. DOI: 10.1007/s00122-005-1954-3.
 
22.
Marcussen T., Sandve S.R., Heier L., Pfeifer M., Kugler K.G., Zhan B., Rudi H., Hvidsten T.R., Mayer K.F.X., Olsen O.A. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome Ancient hybridizations among the ancestral genomes of bread wheat genome interplay in the grain transcriptome of hexaploid bread wheat structural and functional pathways. Science 345: 1251788. DOI: 10.1126/science.1251788.
 
23.
McIntosh R., Dubcovsky J., Rogers W., Morris C., Xia X. 2017. Catalogue of gene symbols for wheat. 2017 Supplement morphological and physiological traits. 12th International Wheat Genetics Symposium held in Yokohama, Japan.
 
24.
Milus E.A., Kristensen K., Hovmøller M.S. 2009. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99: 89–94. DOI: 10.1094/PHYTO-99-1-0089.
 
25.
Oliver R.P. 2014. A reassessment of the risk of rust fungi developing resistance to fungicides. Pest Management Science 70: 1641–1645. DOI: 10.1002/ps.3767.
 
26.
Qayoum A., Line R. 1985. High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75: 1121–1125. DOI: 10.1094/Phyto-75-1121.
 
27.
Ren R.S., Wang M.N., Chen X.M., Zhang Z.J. 2012. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theoretical and Applied Genetics 125: 847–857. DOI: 10.1007/s00122-012-1877-8.
 
28.
Sano H., Ohashi Y. 1995. Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proceedings of the National Academy of Sciences of the United States of America 92: 4138–4144. DOI: 10.1073/pnas.92.10.4138.
 
29.
Savary S., Ficke A., Aubertot J.N., Hollier C. 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Security 4: 519–537. DOI: 10.1007/s12571-012-0200-5.
 
30.
Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233–234. DOI: 10.1038/72708.
 
31.
Schwessinger B. 2016. Fundamental wheat stripe rust research in the 21st century. New Phytologist 213: 1625–1631. DOI: 10.1111/nph.14159.
 
32.
USDA. 2019. World Agricultural Production. Available on: http://apps.fas.usda.gov/psdon....
 
33.
van Ooijen J.W., Voorrips R.E. 2001. JoinMap 3.0. Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands.
 
34.
Voorrips R.E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93: 77–78. DOI: http://dx.doi.org/10.1093/jher....
 
35.
Wan A.M., Chen X.M. 2012. Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Disease 96: 67–74. DOI: 10.1094/Pdis-02-11-0119.
 
36.
Wan A.M., Chen X.M. 2014. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Phytopathology 98: 1534–1542. DOI: 10.1094/PDIS-01-14-0071-RE.
 
37.
Wang S., Wong D., Forrest K., Allen A., Chao S., Huang B.E., Maccaferri M., Salvi S., Milner S.G., Cattivelli L., et al. 2014. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnology Journal 12: 787–796. DOI: 10.1111/pbi.12183.
 
38.
Wellings C.R. 2011. Global status of stripe rust: A review of historical and current threats. Euphytica 179: 129–141. DOI: 10.1007/s10681-011-0360-y.
 
39.
Zeng Z.B. 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468. DOI: 10.1093/aob/mcr323.
 
40.
Zheng J., Yan Z., Zhao L., Li S., Zhang Z., Garry R., Yang W., Pu Z. 2014. Molecular mapping of a stripe rust resistance gene in wheat line C51. Journal of Genetics 93: 443–450. DOI: 10.1007/s12041-014-0401-0.
 
eISSN:1899-007X
ISSN:1427-4345