ORIGINAL ARTICLE
Identification of sterile wild oat (Avena sterilis L.) resistance to acetolactate synthase (ALS)-inhibiting herbicides using different assay techniques
Abdullatief M. Abdurruhman 1, 2, A-D  
,   Sibel Uygur 2, A,   Solvejg K. Mathiassen 3, E-F,   Nezihi Uygur 2, A
 
More details
Hide details
1
Department of Crop Protection, Faculty of Agriculture, University of Khartoum, Khartoum, Sudan
2
Department of Plant Protection, Faculty of Agriculture, Çukurova University, Adana, Turkey
3
Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse, Denmark
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
CORRESPONDING AUTHOR
Abdullatief M. Abdurruhman   

Department of Crop Protection, Faculty of Agriculture, University of Khartoum, Shambat, 13314, Khartoum, Sudan
Submission date: 2019-06-14
Acceptance date: 2020-03-16
Online publication date: 2020-07-28
 
Journal of Plant Protection Research 2020;60(3):244–252
 
KEYWORDS
TOPICS
ABSTRACT
Different techniques have been devised to detect herbicide resistance in weeds, and the overall aim from this study was to compare four different assay techniques for evaluating acetolactate synthase (ALS)-inhibiting herbicide resistance in sterile wild oat (Avena sterilis L.). A resistant sterile wild oat population (R) was collected from the wheat field in Kozan, Adana province, Turkey. The susceptible (S) population was collected from the border of the same field. Effects of different doses of mesosulfuron-methyl + iodosulfuron-methyl- -sodium and pyroxsulam + cloquintocet-mexyl were assessed in agar based (seed and seedling) assay, Petri dish with seeds, and whole plant pot assay. In the agar based assays, the level of resistance was evaluated by measuring coleoptile and hypocotyl lengths, and survival of seedlings. Plant height and shoot dry weight were measured in the Petri dish and whole plant pot assays, respectively. Results from the dose response analyses showed that both the R and S populations were extremely sensitive to mesosulfuron-methyl + iodosulfuron in the seedling bioassay. The resistance indices (RI’s) of the R biotype treated with mesosulfuron-methyl + iodosulfuron in the agar based seed, Petri dish, and whole plant assays were 2.29, 2.63 and 4.18, respectively. The resistance indices of the R biotype treated with pyroxsulam + cloquintocet-mexyl was 3.41, 5.05 and 2.82 in the agar based seed, Petri dish, and whole plant pot assays, respectively. The agar based seed assays and Petri dish assay provided feasible, accurate, rapid, and cost effective opportunities to identify resistance in sterile wild oat.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
FUNDING
This research was funded by the Scientific Research Projects Unit (FDK-2017-8186) of Çukurova University.
 
REFERENCES (41)
1.
Abdurruhman A.M., Uygur S., Uygur F.N. 2018. Detection of acetyl-CoA carboxylase (ACCase) inhibitor herbicides resistance in sterile wild oat (Avena sterilis L.) using agar quick test. Journal of Agricultural Science and Technology A 8 (1): 10–17. DOI: 10.17265/2161-6256/2018.01.002.
 
2.
Beckie H.J., Friesen L.F., Nawolsky K.M., Morrison I.N. 1990. A rapid bioassay to detect trifluralin-resistant green foxtail (Setaria viridis). Weed Technology 4 (3): 505–508. doi:10.1017/S0890037X00025860.
 
3.
Beckie H.J., Heap I.M., Smeda R.J., Hall L.M. 2000. Screening for herbicide resistance in weeds. Weed Technology 14 (2): 428–445. DOI: 10.1614/0890-037X(2000)014[0428:SFHRIW]2.0.CO;2.
 
4.
Beckie H.J., Tardif F.J. 2012. Herbicide cross resistance in weeds. Crop Protection 35: 15–28. DOI: 10.1016/j.cropro.2011.12.018.
 
5.
Bi Y.L., Liu W.T., Li L.X., Yuan G.H., Jin T., Wang J.X. 2013. Molecular basis of resistance to mesosulfuron-methyl in Japanese foxtail, Alopecurus japonicus. Journal of Pesticide Science 38 (1): 74–77. DOI: 10.1584/jpestics.D12-075.
 
6.
Boutsalis P. 2001. Syngenta Quick-Test: A rapid whole-plant test for herbicide resistance. Weed Technology 15 (2): 257–263. DOI: 10.1614/0890-037x(2001)015[0257:sqtarw]2.0.co;2.
 
7.
Brosnan J.T., Vargas J.J., Reasor E.H., Viggiani R., Breeden G.K., Zobel J.M. 2017. A diagnostic assay to detect herbicide resistance in annual bluegrass (Poa annua). Weed Technology 31 (4): 609–616. DOI: 10.1017/wet.2017.26.
 
8.
Burgos N.R. 2015. Whole-plant and seed bioassays for resistance confirmation. Weed Science 63 (SP1): 152–165. DOI: 10.1614/ws-d-14-00019.1.
 
9.
Burgos N.R., Tranel P.J., Streibig J.C., Davis V.M., Shaner D., Norsworthy J.K., Ritz C. 2013. Review: confirmation of resistance to herbicides and evaluation of resistance levels. Weed Science 61 (1): 4–20. DOI: 10.1614/ws-d-12-00032.1.
 
10.
Burke I.C., Thomas W.E., Burton J.D., Spears J.F., Wilcut J.W. 2006. A seedling assay to screen aryloxyphenoxypropionic acid and cyclohexanedione resistance in johnsongrass (Sorghum halepense). Weed Technology 20 (4): 950–955. DOI: 10.1614/wt-05-160.1.
 
11.
Burnet W.M.W., Christopher J.T., Holtum J.A.M., Powles S.B. 1994. Identification of 2 mechanisms of sulfonylurea resistance within one population of rigid ryegrass (Lolium-rigidum) using a selective germination medium. Weed Science 42 (3): 468–473. DOI: 10.1017/S0043174500076785.
 
12.
Cirujeda A., Recasens J., Taberner A. 2001. A qualitative quick-test for detection of herbicide resistance to tribenuron-methyl in Papaver rhoeas. Weed Research 41 (6): 523–534. DOI: 10.1046/j.1365-3180.2001.00255.x.
 
13.
Corbett C.A.L., Tardif F.J. 2006. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. Pest Management Science 62 (7): 584–597. DOI: 10.1002/ps.1219.
 
14.
Duggleby R.G., Mccourt J.A., Guddat L.W. 2008. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiology and Biochemistry 46 (3): 309–324. DOI: https://doi.org/10.1016/j.plap....
 
15.
Fernandez-Moreno P.T., Alcantara-de la Cruz R., Cruz-Hipolito H.E., Rojano-Delgado A.M., Travlos I., De Prado R. 2016. Non-target site tolerance mechanisms describe tolerance to glyphosate in Avena sterilis. Frontiers in Plant Science 7: 1220. DOI: 10.3389/fpls.2016.01220.
 
16.
Ghanizadeh H., Harrington K., James T., Woolley D. 2015. A quick test using seeds for detecting dicamba resistance in fathen (Chenopodium album). Australian Journal of Crop Science 9 (4): 337–343.
 
17.
Heap I. 2014. Global perspective of herbicide-resistant weeds. Pest Management Science 70 (9): 1306–1315. DOI: https://doi.org/10.1002/ps.369....
 
18.
Heap I. 2019. The international survey of herbicide resistant weeds. Available on: www.wedscience.org [Accessed: March 21, 2019].
 
19.
Kaundun S.S., Hutchings S.J., Dale R.P., Bailly G.C., Glanfield P. 2011. Syngenta ‘RISQ’ test: a novel in-season method for detecting resistance to post-emergence ACCase and ALS inhibitor herbicides in grass weeds. Weed Research 51 (3): 284–293. DOI: 10.1111/j.1365-3180.2011.00841.x.
 
20.
Kaundun S.S., Hutchings S.J., Harris S.C., Jackson L.V., Shashi-kiran R., Dale R.P., Mcindoe E. 2014. A simple in-season bioassay for detecting glyphosate resistance in grass and broadleaf weeds prior to herbicide application in the field. Weed Science 62 (4): 597–607. DOI: 10.1614/ws-d-14-00046.1.
 
21.
Kuk Y.I., Burgos N.R., Talbert R.E. 2000. Cross- and multiple resistance of diclofop-resistant Lolium spp. Weed Science 48 (4): 412–419. DOI: 10.1614/0043-1745(2000)048[0412:camrodrl]2.0.co;2.
 
22.
Kuk Y.I., Jung H.I., Kwon O.D., Lee D.J., Burgos N.R., Guh J.O. 2003. Rapid diagnosis of resistance to sulfonylurea herbicides in monochoria (Monochoria vaginalis). Weed Science 51 (3): 305–311. DOI: 10.1614/0043-1745(2003)051[0305:rdorts]2.0.co;2.
 
23.
Layton D.J., Kellogg E.A. 2014. Morphological, phylogenetic, and ecological diversity of the new model species Setaria viridis (poaceae: Paniceae) and its close relatives. American Journal of Botany 101 (3): 539–557. DOI: 10.3732/ajb.1300428.
 
24.
Letouzé A., Gasquez J. 1999. A rapid reliable test for screening aryloxyphenoxy- propionic acid resistance within Alopecurus myosuroides and Lolium spp. populations. Weed Research 39 (1): 37–48. DOI: 10.1046/j.1365-3180.1999.00120.x.
 
25.
Moss S.R. 1995. Techniques for determining herbicide resistance. p. 547–556. In: Proceedings of Brighton Crop Protection Conference – Weeds, Brighton, UK, 20–23 November 1995.
 
26.
Moss S.R., Cocker K.M., Brown A.C., Hall L., Field L.M. 2003. Characterisation of target-site resistance to ACCase-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass). Pest Management Science 59 (2): 190–201. DOI: 10.1002/ps.623.
 
27.
Moss S., Ulber L., Hoed I.D. 2019. A herbicide resistance risk matrix. Crop Protection 115: 13–19. DOI: https://doi.org/10.1016/j.crop....
 
28.
Panozzo S., Scarabel L., Rosan V., Sattin M. 2017. A new Ala-122-Asn amino acid change confers decreased fitness to ALS-resistant Echinochloa crus-galli. Frontiers in Plant Science 8: 2042. DOI: 10.3389/fpls.2017.02042.
 
29.
Papapanagiotou A.P., Damalas C.A., Menexes G.C., Eleftherohorinos I.G. 2019. Resistance levels and chemical control options of sterile oat (Avena sterilis L.) in Northern Greece. International Journal of Pest Management 66 (2): 106–115. DOI: 10.1080/09670874.2019.1569285.
 
30.
Peterson M.A., Collavo A., Ovejero R., Shivrain V., Walsh M.J. 2018. The challenge of herbicide resistance around the world: a current summary. Pest Management Science 74 (10): 2246–2259. DOI: 10.1002/ps.4821.
 
31.
Preston C., Powles S.B. 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum. Heredity (Edinb.) 88 (1): 8–13.
 
32.
Ritz C., Baty F., Streibig J.C., Gerhard D. 2015. Dose-response analysis using R. PLOS ONE 10 (12): 1–13. DOI: 10.1371/journal.pone.0146021.
 
33.
Sasanfar H., Zand E., Baghestani M.A., Mirhadi M.J., Mesgaran M.B. 2017. Cross-resistance patterns of winter wild oat (Avena ludoviciana) populations to ACCase inhibitor herbicides. Phytoparasitica 45 (3): 419–428. DOI: 10.1007/s12600-017-0587-9.
 
34.
Shrestha A., Hembree K.J., Va N. 2007. Growth stage influences level of resistance in glyphosate-resistant horseweed. California Agriculture 61 (2): 67–70. DOI: 10.3733/ca.v061n02p67.
 
35.
Tal A., Kotoula-Syka E., Rubin B. 2000. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Protection 19 (7): 467–472. DOI: 10.1016/s0261-2194(00)00041-7.
 
36.
Tursun N. 2012. Determination on a quick test of herbicide resistance to fenoxaprop-p-ethyl in sterile oat (Avena sterilis L.) in cereal crops. TABAD, Tarım Bilimleri Araştırma Dergisi 5 (2): 161–166.
 
37.
Uludag A., Nemli Y., Rubin B. 2006. Seed and seedlings assays for rapid detection of fenoxaprop resistance in sterile wild oat (Avena sterilis). Research Journal of Agriculture and Biological Sciences 2 (3): 127–136.
 
38.
Uludag A., Nemli Y., Tal A., Rubin B. 2007. Fenoxaprop resistance in sterile wild oat (Avena sterilis) in wheat fields in Turkey. Crop Protection 26 (7): 930–935. DOI: 10.1016/j.cropro.2006.08.012.
 
39.
Xu X., Wang G.Q., Chen S.L., Fan C.Q., Li B.H. 2010. Confirmation of flixweed (Descurainia sophia) resistance to tribenuron-methyl using three different assay methods. Weed Science 58 (1): 56–60. DOI: 10.1614/WS-09-034.1.
 
40.
Yang C.H., Dong L.Y., Li J., Moss S.R. 2007. Identification of Japanese foxtail (Alopecurus japonicus) resistant to haloxyfop using three different assay techniques. Weed Science 55 (6): 537–540. DOI: 10.1614/ws-07-016.1.
 
41.
Yu Q., Powles S.B. 2014. Resistance to AHAS inhibitor herbicides: current understanding. Pest Management Science 70 (9): 1340–1350. DOI: 10.1002/ps.3710.
 
eISSN:1899-007X
ISSN:1427-4345