Als gene mutations in Apera spica-venti confer broad-range resistance to herbicides
More details
Hide details
Section of Basic Natural Sciences in Horticulture, Faculty of Horticulture, Warsaw University of Life Sciences Nowoursynowska 166, 02-787 Warsaw, Poland
Weed Science and Plant Protection Department, Institute of Plant Protection – National Research Institute Władysława Węgorka 20, 60-318 Poznań, Poland
Corresponding author
Michał Krysiak
Section of Basic Natural Sciences in Horticulture, Faculty of Horticulture, Warsaw University of Life Sciences Nowoursynowska 166, 02-787 Warsaw, Poland
Journal of Plant Protection Research 2011;51(3):261-267
Several biotypes of wind bentgrass in Poland have been identified as being resistant to acetolactate synthase (ALS) in- hibitors. We screened these weeds with chlorsulfuron and performed a whole-plant bioassay with a range of doses based on these four herbicides: chlorsulfuron, sulfosulfuron, propoxycarbazone-sodium and mesosulfuron-methyl + iodosulfuron-methyl-sodium mixture. Ten biotypes, diverse in their levels of resistance, were submitted for molecular tests. PCR amplification and sequencing of al s domains demonstrated numerous single nucleotide polymorphisms. Nine biotypes showed non-synonymous substitutions in codon Pro 197 , changing it to Ser or Thr. Mutation in Pro 197 conferred a high level of resistance to the tested herbicides. Analysis of four biotypes also revealed a substitution in the Ala 122 codon, changing it to Val. In one biotype this substitution was not accompa- nied by Pro 197 mutation and this biotype was resistant to chlorsulfuron and mesosulfuron + iodosulfuron, but not to sulfosulfuron or propoxycarbazone-sodium. Correspondence between mutations and levels of resistan ce to ALS inhibitors may support management of resistant weeds with the existing palette of herbicides.
The authors have declared that no conflict of interests exist.
Adamczewski K., Kierzek R. 2007. Występowanie biotypów miotły zbożowej Apera spica-venti L. na herbicydy sulfonylomocznikowe. Prog. Plant Protection/Post. Ochr. Roślin. 47 (3): 333–340.
Adamczewski K., Matysiak K. 2009. Niektóre aspekty z biologii Apera spica-venti L. Pam. Puł. 150: 7–17.
Balgheim N., Wagner J. 2006. www.weedscience.org/Case/Case.asp?ResistID=5292, Last accessed: 23 July 2009.Bernasconi P., Woodworth A.R., Rosen B.A., Subramanian M.V., Siehl D.L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270 (29):17381–17385.
Boutsalis P., Karotam J., Powles S.B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientalne and Brassica tournefortii. Pestic. Sci. 55 (5): 507–516.
Corbett C-A.L., Tardiff F.J. 2006. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. Pest Manage. Sci. 62 (7): 584–597.
Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull.19: 11–15.
Gressel J. 2002. Resistance to inhibitors of acetolactate synthase. p. 155–161. In: “Molecular Biology of Weed Control” (J. Gressel, ed.). 1st ed. Taylor and Francis, London and New York, UK and USA, 504 pp.
Heap I. 2010. International Survey of Herbicide Resistant Weeds. Available at: http://weedscience.org, Last accessed: 23 July 2010.
Laplante J., Rajcan I., Tardif F.J. 2009. Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis. Theor. Appl. Genet. 119 (4): 577–585.
McNaughton K.E., Letarte J., Lee E.A., Tardif F.J. 2005. Mutations in ALS confer herbicide resistance in redroot pigweed Amaranthus retroflexus. and Powell amaranth Amaranthus powellii. Weed Sci. 53 (1): 17–22.
Milliman L.D., Riechers D.E., Wax L.M., Simmons F.W. 2003. Characterization of two biotypes of imidazolinone-resistant eastern black nightshade Solanum ptycanthum .Weed Sci. 51 (2): 139–144.
Novakowa K., Soukup J., Wagner J., Hamouz P., Namestek J. 2006. Chlorsulfuron resistance in silky bent-grass Apera spicventi L. Beauv.in the Czech Republic. J. Plant Dis. Protect., special issue XX: 139–146.
Park K.W., Mallory Smith C.A. 2004. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res. 44 (2): 71–77.
Ralser M., Querfurth R., Warnatz H.J., Lehrach H., Yaspo M.L., Krobitsch S. 2006. An efficient and economic enhancer mix for PCR. Biochem. Biophys. Res. Commun. 347 (3): 747–751.
Robertson J.R., Preisler H.K., Russell R.M. 2003. Polo Plus Probit and Logit Analysis. User’s Guide, Berkeley, 36 pp.
Rola H., Marczewska K. 2002. Biotypy chwastów odporne na chlorosulfuron w rejonie Wrocławia. Prog. Plant Protection/Post. Ochr. Roślin 42 (2): 575–577.
Tal A., Rubin B. 2004. Occurrence of resistant Chrysanthemum coronarium to ALS inhibiting herbicides. Israel Resistant Pest Manage. Newslett.13 (2): 31–33.
Tranel P.J., Wright T.R. 2002. Resistance of weeds to ALS inhibiting herbicides: what have we learned?Weed Sci. 50 (6): 700–712.
Tranel P.J., Wright T.R., Heap I.N. 2010. ALS Mutations from Resistant Weeds. Available at http://www.weedscience.org, Last accesed: 30th June 2010.
Trucco F., Hager G., Tranel P.J. 2006. Acetolactate synthase mutation conferring imidazolinone-specific herbicide resistance in Amaranthus hybridus J. Plant Physiol. 163 (4): 475–479.
Warwick S.I., Thompson B.K., Black L.D. 1987. Genetic variation in Canadian and European populations of the colonizing weed species Apera spica-venti. New Phytol. 106 (2): 301–317.
Whaley C.M., Wilson H.P., Westwood J.H. 2006. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55 (2): 83–90.
Journals System - logo
Scroll to top