Use of cultural filtrates of certain microbial isolates for powdery mildew control in squash
More details
Hide details
Agricultural Botany Department Faculty of Agriculture Kafr El-Shiekh Univ., Kafr El-Shiekh 33516 Egypt
Pesticides Department Faculty of Agriculture Kafr El-Shiekh Univ., Kafr El-Shiekh 33516, Egypt
Corresponding author
Gaber Abd Elwenees Elkot
Agricultural Botany Department Faculty of Agriculture Kafr El-Shiekh Univ., Kafr El-Shiekh 33516 Egypt
Aly Soliman Hamed Derbalah
Pesticides Department Faculty of Agriculture Kafr El-Shiekh Univ., Kafr El-Shiekh 33516, Egypt
Journal of Plant Protection Research 2011;51(3):252-260
Powdery mildew induces significant losses in yield and quality of squash. Therefore, culture filtrates of certain microbial isolates, ( Epicoccum nigrum, Epicoccum minitans, Epicoccum sp ., Trichoderma harzianum, Trichoderma viride and Bacillus pumilus ) were used alone, and in combination with the fungicide penconazole to control powdery mildew in squash, under field conditions. Moreover, GC-MS analysis was carried out to identify the chemical components of the most effective culture filtrates against powdery mildew pathogen. The results showed that culture filtrates of different microbial isolates (except for Trichoderma harzianum ) were more effective against powdery mildew in squash than the tested fungicide alone at the recommended levels, in both tested seasons . The results also showed that mixing different culture filtrates with penconazole improved efficiency against powdery mildew compared to using the fungicide alone, in both tested seasons. The efficacy of the culture filtrates of the tested microbial isolates against powdery mildew were due to the presence of a mixture of known antifungal compounds. The results suggest the possible use of the culture filtrates of the tested microbial isolates as alternative to fungicides, in powdery mildew control. Also, this study suggests the possible mixing of the culture filtrate of the tested biocontrol agents with fungicides to minimize the applied amount of fungicides.
The authors have declared that no conflict of interests exist.
Abou-Elela G.M., Abd-Elnaby H., Ibrahim H.A.H., Okbah M.A. 2009. Marine natural products and their potential aplications as anti-infective agents. World Appl. Sci. J. 7 (7): 872–888.
Algam S.A., Xie G.L., Li B., Coosemans J., Liu B. 2004. Comparative performance of Bacillus spp. in growth promotion and suppression of tomato bacterial wilt caused by Ralstonia solanacearum. J. Zhejiang Univ.,Agric. Life Sci. 30: 603–610.
Alstrom S. 2001. Characteristics of bacteria from oil seed rape in relation to their biocontrol activity against Verticillium dahliae. J. Phytopathol. 149: 57–64.
Bade N.S. 1995. A Thielaviopsis basicola(Berk., Br.) Ferr. Morfológiai ės Patológiai Vizsgậlata ės a Vėdekezės Lehetósėgei. Ph.D. thesis, Department of Plant Protection, University of agricultural Sciences, Gödöllõ, Hungary, 15 pp.
Bassam S.E., Benhamou N., Carisse O. 2002. The role of melahnin in the antagonistic interaction between the apple scab pathogen Venturia inaequalis and Microsphaeropsis ochracea. Can. J. Microbiol. 48: 349–358.
Bélanger R.R., Benyagoub M. 1997. Challenges and prospects for integrated control of powdery mildews in the greenhouse. Can. J. Plant Pathol.19: 310–314.
Bruce A., Stewart D., Verrall S., Wheatley R.E. 2003. Effect of volatiles from bacteria and yeast on the growth and pigmentation of sapstain fungi. Int. Biodeterior. Biodegrad. 51: 101–108.
Calvert D.J., Huffaker C.B. 1974. Predator (Metaseiulus occidentalis) – prey (Pronematus spp.) interactions under sulphur and cattail pollen applications in a noncommercial vineyard. Entomophaga 19: 361–369.
Cao Z.Y., Yang S.Y., Dong J.G. 2006. A review on relations between pathogenicity and melanin of plant fungi. Microbiology 33: 154–158. (in Chinese).
Cook R. J. 1988. Biological control and holistic plant-health carein agriculture. Am. J. Alter. Agric. 3: 51–62.
Dale W., Raynor L., Mitchell A., Walker R., Wallker K. 2004. Antifungal activity of four fatty acids against plant pathogenic fungi. Mycopathologica 157: 87–90.
Daniele B.L., Cristiani M., Bisignano G., Saija A., Mazzanti G. 2006. In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from Olea europaea L. fruit. Phytomedicine 13: 558–563.
Daayf F., Schmitt A., Bélanger R.R. 1997. Evidence of phvtoalexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachalinensis, PlaDubey, P.S. and Mall, L.P. 1972. Herbicidal pollutive, pollen damage by herbicide vapours. Sci. Cult. 39: 556–558.
Elad Y., Kirshner B., Yehuda N., Sztjenberg A. 1998. Management of powdery mildew and gray mold of cucumber by Trichoderma harzianumT39 and Ampelomyces quisqualis AQ10. Biocontrol 43: 241–251.
El-Bogdady M.M.E. 1993. Integrated Postharvest Diseases Management of Certain Pome Fruits. Ph.D. thesis Fac. Agric. AlAzhar Univ., 55 pp.
Elkot G.A.N., Belal E.B.A. 2006. Biocontrol of Fusarium dampingoff of pea by certain bacterial antagonists. J. Agric. Res. Tanta Univ. 32: 225–241.
Elkot G.A.N.,Hegazi M.A. 2008. Non-chemical control of powedery mildew disease on zinnia (Ziania elegans L.). Alex. J. Agric. Res. 53: 219–230.
El-Naggar M.M.E. 1996. Studies on Certain Tomato Fungal Diseases under Plastic Tunnels in Hungary. Ph.D. thesis, Department of Plant Protection, University of Agricultural Sciences, Gödöllõ, Hungary, 123 pp.
Falk S.P., Gadoury D.M., Cortesi P., Pearson R.C., Seem R.C. 1995. Parasitism of Uncinula negator ascomata by the mycopara site Ampelomyces quisqualis. Phytopathology 85: 794–800.
Fan O., TianS. 2001. Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus(Saito) Skinner. Postharvest Biol. Technol. 21: 257–358.
Fernando D.W.G., Ramarathnama R., Krishnamoorthy A.S., Savchuk S.C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem.37: 955–964.
Goncalves L.G. , Nogueira J.M.F., Matos O., De Sous R.B. 2003. Photoactive extracts from Thevetia peruviana with antifungal properties against Cladosporium cucumerinum J. Photochem. Photobiol., B: Biology 70: 51–54.
Hegazi M.A., El-Kot G.A.N. 2008. Efficacy of some essential oils on controlling powdery mildew disease on zinnia (Ziania elegant L.). Alex. J. Agric. Res. 53: 232–241.
Horst R.K., Kawamoto S.O., Porter L.L. 1992. Effect of sodium bicarbonate and oils on the control of powdery mildew and black spot of roses. Plant Dis. 76: 247–251.
Hou X.W., Boyetchko S.M., Brkic M., Olson D., Ross A., Hegedus D. 2006. Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl. Microbiol. Biotechnol. 72: 644–653.
Howell C.R., Stipanovic R.D., Lumsden R.D. 1993. Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci. Technol. 3: 435–440.
Jay-Ran L., Lee S., Kubo,I., Hong S. 1998. Antifungal activity of m,edurim chain alkenals against and their inhibitory effect on plasma memberane ATPase of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 8: 197–202.
Kai M., Effmert U., Berg G. , Piechulla B. 2006.Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 157: 351–360.
Kamel S.M.H. 2003. Antagonistic effects of some microbial inhibitants on phylloplane of squash plants toward Sphaerotheca fuliginea. MSc. thesis, Fac. Agric. Tanta University, 94 pp.
Kimati H., Cardoso C.O.M., Filho A. 1980. Doencas das cucurbita ceas (abobora, abobrinha, chuchu, melancia, melao, moranga, pepino). p. 251–269. In: “Manual de Fitopatologia. Doencas das Plantas Cultivadas” (F. Galli, ed.). Ceres, Sao Paulo.Koitabashi M. 2005. New biocontrol method for parsley powdery mildew by the antifungal volatiles-producing fungus Kyu-W63. J. General Plant Pathol. 71: 280–284.
Mahboubi M., Haghi G. 2008. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 199: 325–327.
McGrath M.T., Staniszewska H., Shishko N. 1996. Fungicide sensitivity of Sphaerotheca fuliginea populations in the United States. Plant Dis. 80: 697–703.
McGrath M.T., 1996. Increased resistance to triadimefon and to benomy in Sphaerotheca fuliginea populations following fungicide usage over one season. Plant Dis. 80: 633–639.
McGrath M.T., Staniszewska H., Shishko N. 1996. Fungicide sensitivity fo Sphaerotheca fuliginea populations in the United States. Plant Dis. 80: 697–703.
Mercier J., Manker D.C. 2005. Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soil less mix by the volatile-producing fungus Muscodor albus. Crop Protect. 24: 355–362.
Neri F., Mari M., Brigati S., Bertolini P. 2009. Control of Neofabraea alba by plant volatile compounds and hot water. Postharvest Biol. Technol. 51: 425–430.
Pamela G. 2002. An effective biofungicide with a noval mode of action. Pesticide outlook. October (CAB abstracts): 193–194.Paterson R.M. 2006. Ganoderma – a therapeutic fungal biofactory. Phytochemistry 67 (18): 1985–2001.
Pertot I., Rosaly Z., Liat A., Mario B., Gino A., Elad Y. 2007. Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Protect. 27 (3–5): 622–631.
Pritee W., Rai M., Deshmukh S.K., Durate M.C.T. 2007. Bioactivity of oils of Trigonella Foenum-graecumand Pongamia pinna. Afr. J. Biotechnol.6: 1592–1596.
Ragas C.Y., Hofilena J.G., Rideout J.A. 2002. New furanoid diterpenes from Caesalpinia pulcherrima. J. Nat. 65, p. 1107.
Tasaka K., Akagi M., Miyoshi K., Mio M., Makino T. 1988a. Antiallergic constituents in the culture medium of Ganoderma lucidum. (I). Inhibitory effect of oleic acid on histamine release. Agents Actions 23: 153–156.
Tasaka K., Mio M., Izushi K., Akagi M., Makino T. 1988b. Antiallergic constituents in the culture medium of Ganoderma lucidum. (II).The inhibitory effect of cycloocta sulfur on histamine release. Agents Actions 23: 157–160.
UlteeA., Bennik M.H.J., Moezelaar R. 2002. The Phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68: 1561–1568.
Wei L.W., Wei M., Bing-Yu Z., You-chen D., Feng I. 2008. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric. Sci. China 7: 1104–1114.
Wheatley R.E. 2002. The consequences of volatile organiccompound mediated bacterial and fungal interactions. Antonie Leeuwenhoek 81: 357–364.
Wilson C.H., Franklin J.D., Otto B.E. 1987. Fruit volatiles inhibitory to Monilinia fructicola and Botrytis cinerea. Plant Dis. 71: 316–319.
Wright S.J.L., Thompson R.J. 1985. Bacillus volatiles antagonize cyanobacteria. FEMS Microbiol. Lett. 30: 263–267.
Yoshida S.S., Hiradate T., Tsukamoto K., Shirata A. 2001. Anti2microbial activity of culture filtrate of Bacallus amyloliquefaciens RC-2 isolated from mulberry leaves February. Biol. Control 91: 2181–2187.
Zou C.S., Mo M.H., Gu Y.Q., Zhou J.P., Zhang K.Q. 2007. Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol. Biochem. 39: 2371–2379.
Journals System - logo
Scroll to top