Lethal effects of Spinosad on Chrysoperla carnea larvae (Neuroptera: Chrisopidae) under laboratory conditions
More details
Hide details
Department of Plant Protection, Faculty of Agriculture, University of Urmia, Iran
Journal of Plant Protection Research 2010;50(2):179–183
The use of selective insecticides could improve conservation of natural enemies and therefore contribute to the success of Integrated Pest Management (IPM) programs. In this study, the toxicity of one selective insecticide, Spinosad to common green lacewing Chrysoperla carnea Stephens was evaluated. Several stages of C. carnea larvae were exposed to Spinosad under laboratory conditions. The used quantities of Spinosad were less than the maximum recommended rate given on the product label. In contact bioassay tests, a direct relationship was detected between the concentration of Spinosad and mortality rate of first instar larvae. So that, the employing of 250 and 2 500 ppm of Spinosad caused 33 and 67 per cent mortality, respectively. Mortality rate was recorded 1–3 day post treatment. In implementation of 250 ppm of Spinosad on second and third instar larvae showed negligible mortality rate after 3 days whereas the first instars larvae suffered 33 per cent mortality. On the basis of collected data we could conclude that Spinosad is not to be considered to have an environmental safety profile on C. carnea similarly to well established biological insecticides.
The authors have declared that no conflict of interests exist.
Maroufpoor Mostafa
Department of Plant Protection, Faculty of Agriculture, University of Urmia, Iran
1. Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265–267.
2. Bret B.L., Larson L.L., Schoonover J.R., Sparks T.C., Thompson G.D. 1997. Biological properties of Spinosad. Down to Earth 52: 6–13.
3. Cisneros J., Goulson D., Derwent L.C., Penagos D.I., Herna’ndezO. 2002. Toxic effects of Spinosad on predatory insects. Biol. Control 23: 15–163.
4. Cleveland C.B., Mayes M.A., Cryer S.A. 2001. An ecological risk assessment for spinosad use on cotton. Pest Manage. Sci. 58: 70–84.
5. Copping L.G., Menn J.J. 2000. Biopesticides: A review of their action, applications and efficacy. Pest Manage. Sci. 56: 651–676.
6. Croft B.A. 1990. Arthropod Biological Control Agents and Pesticides. John Wiley, New York, 723 pp.
7. Crouse G.D., Sparks T.C., Schoonover J., Gifford J., Dripps J., Bruce T., Larson L.L., Garlich J., Hatton C., Hill R.H., Martvnow J.G. 2001. Recent advances in the chemistry of spinosyns. Pest Manage. Sci. 57: 177–185.
8. Elzen G.W., Maldonado S.N., Rojas M.G. 2000. Lethal and sublethal effects of selected insecticides and an insect growth regulator on the boll weevil (Coleoptera: Curculionidae) ectoparasitoid Catolaccus grandis (Hymenoptera: Pteromalidae). J. Econ. Entomol. 93: 300–303.
9. Elzen G.W. 2001. Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae). J. Econ. Entomol. 94: 55–59.
10. Galvan T.L., Koch R.L., Hutchison W.D. 2005. Toxicity of commonly used insecticides in sweet corn and soybean to multicolored Asian lady beetle (Coleoptera: Coccinellidae). J. Econ. Entomol. 98 (3): 780–789.
11. Harris J.G. 2000. Chemical Pesticide Markets, Health Risks and Residues. CABI, Wallingford, UK, 54 pp.
12. Hutchison W.D., Flood B., Wyman J.A. 2004. Advances in United States sweet corn and snap bean pest management. p. 247–278. In: “Insect Pest Management” (A.R. Horowitz, I. Ishaaya, eds.). Springer-Verlag, Berlin, Germany, 344 pp.
13. Martinson T., Williams L. III, English-Loeb G. 2001. Compatibility of chemical disease and insect management practices used in New York vineyards with biological control by Anagrus spp. (Hymenoptera: Mymaridae), parasitoids of Erythroneura leafhoppers. Biol. Control 22: 227–234.
14. Medina P., Budia F., Smagghe G., Viñuela E. 2001. Activity of Spinosad, Tebufenozide and Azadirachtin on eggs and pupae of the predator Chrysoperla carnea (Stephens) under laboratory conditions. Biocontrol Sci. Technol. 11: 597–610.
15. Miles M., Dutton R. 2000. Spinosad – a naturally derived insect control agent with potential for use in integrated pest management systems in greenhouses. p. 339–344. In: Proc. Of the BCPC Conference – Pests and Diseases. 13–16 November 2000, Brighton, UK.
16. Mori K., Gotoh T. 2001. Effects of pesticides on thespider mite predators, Scolothrips takahashii (Thysanoptera: Thripidae) and Stethorus japonicus (Coleoptera: Coccinellidae). Int. J. Acarol. 27: 299–302.
17. National Research Council. 1996. Ecologically Based Pest Management: New Solutions for a New Century. National Academy Press, Washington, DC, 144 pp.
18. Rimoldi F., Schneider M.I., Ronco A.E. 2008. Susceptibility of Chrysoperla externa eggs (Neuroptera: Chrysopidae) to conventional and biorational insecticides. Environ. Entomol. 37 (5): 1252–1257.
19. Salgado V.L. 1998. Studies on the mode of action of Spinosad: insect symptoms and physiological correlates. Pest. Biochem. Physiol. 60: 91–102.
20. SAS Institute Inc. 2000. SAS/STAT User’s Guide, Release 8.01 edition. Cary, North Carolina, USA.
21. Schneider M.I., Magghe G., Pineda S., Vinuela E. 2004. Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator. Biol. Control 31: 189–198.
22. SPSS. 1999. SPSS v. 10 User’s Guide. SPSS Inc., Chicago, IL.
23. Stark J.D., Jepson P.C., Mayer D.F. 1995. Limitations to use of topical toxicity data for predictions of pesticide side effects in the field. J. Econ. Entomol. 88: 1081–1088.
24. Symondson W.O., Sunderland K.D., Greenstone M.H. 2002. Can generalist predators be effective biocontrol agents? Annu. Rev. Entomol. 47: 561–594.
25. Thompson G., Hutchins S. 1999. Spinosad. Pestic. Outlook 10: 78–81.
26. Tillman P.G., Mulrooney J.E. 2000. Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinelidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. J. Econ. Entomol. 93: 1638–1643.
27. Wanner K.W., Helson B.V., Harris B.J. 2000. Laboratory and field evaluation of Spinosad against the gypsy moth, Lymantria dispar. Pest Manage. Sci. 56: 855–860.
28. Williams T., Valle J., Viuela E. 2003. Is the naturally derived insecticide Spinosad compatible with insect natural enemies? Biocontrol Sci. Tech. 13: 459–475.
29. Viñuela E., Adán A., González M., Budia F., Smagghe G., Del Estal P. 1998. Spinosad and azadirachtin: effects of two naturally derived pesticides on the predatory bug Podisus maculiventris (Say) (Hemiptera: Pentatomidae) [In Spanish]. Boletín Sanidad Vegetal Plagas 24: 57–66.
30. Vogt H., Bigler F., Brown K., Candolfi M.P., Kemmeter F., Kühner Ch., Moll M., Travis A., Ufer A., Viñuela E., Waldburger M., Waltersdorfer A. 2000. Laboratory method to test effects of plant protection products on larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). p. 27–44. In: “Guidelines to Evaluate Side-Effects of Plant Protection Products to Non-Target Arthropods” (M.P. Candolfi, S. Blümel, R. Forster, F.M. Bakker, C. Grimm, S.A. Hassan, U. Heimbach, B. Mead-Briggs, R. Reber, R. Schmuck, H. Vogt, eds). Reinheim, IOBC/WPRS.
31. Xian-Hui Y., Xue-Feng W. L., You-Jun Z., Bao-Yun X. 2008. Sublethal effects of spinosad on Plutella xylostella (Lepidoptera: Yponomeutidae). Crop Protect. 27: 1385–1391.