ORIGINAL ARTICLE
Some brain peptides regulating the secretion of digestive enzymes in the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae)
 
More details
Hide details
1
Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj, Iran
CORRESPONDING AUTHOR
Seyede Minoo Sajjadian
Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, P.O. Box 4111, Karaj, Iran
Submission date: 2014-04-08
Acceptance date: 2014-08-06
 
Journal of Plant Protection Research 2014;54(3):279–286
KEYWORDS
TOPICS
ABSTRACT
The Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) is a destructive polyphagous pest of many stored products. To interfere with the physiological processes, especially digestion, of the larval pest, more information on the regulatory mechanisms is needed. The brain extract from 1-day-old last instar larvae of P. interpunctella was examined. In the bioassays, the midguts were treated with the brain extract, and the carbohydrase and protease activities were measured. The brain extract showed increasing dose-dependent effects on α-amylase, α-glucosidase, β-glucosidase, α-galactosidase, β-galactosidase, and trypsin secretion in the larval midgut. The extract was further characterised and partially purified using high performance liquid chromatography (HPLC). Several peptides were determined in the brain extract regulating hydrolase activities in the larval midgut of the pest.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (27)
1.
Bernfeld P. 1955. Amylases, α and β. Methods Enzymol. 1: 149–158.
 
2.
Dockray G.J., Duve H., Thorpe A. 1981. Immunocytochemical characterization of gastrin/cholecystokinin-like peptides in the brain of the blow fly Calliphora vomitoria. Gen. Comp. Endocrinol. 45 (4): 491–496.
 
3.
Duve H., Thorpe A., Lazarus N.R. 1979. Isolation of material displaying insulin-like immunological and biological activity from the brain of the blow fly, Calliphora vomitoria. Biochem. J. 184 (2): 221–227.
 
4.
Duve H., Thorpe A. 1981. Gastrin/cholecystokinin (CCK)-like immunoreactive neurones in the brain of the blowfly, Calliphora eryfhrocephala (Diptera). Gen. Comp. Endocrinol. 43: 381–391.
 
5.
Duve H., Thorpe A. 1984. Immunocytochemical mapping of gastrin/CCK-like peptides in the neuroendocrine system of the blowfly Calliphora vomitoria (Diptera). J. Cell Tissue Res. 237 (2): 309–320.
 
6.
Hagstrum D.W., Subramanyam B. 1996. Integrated Management of Insects in Stored Products. Marcel Dekker, Inc., New York, 409 pp.
 
7.
Harshini S., Sreekumar S. 2001. Isolation and partial purification of the digestive enzyme-release peptide hormone from the midgut of larvae of Opisina arenosella Walk. (Lepidoptera: Cryptophasidae). p. 191–197. In: “Advances in Entomology” (K. Muraleedharan, ed.). Association for Advancement of Entomology, Trivandrum, India, 359 pp.
 
8.
Harshini S., Nachman R.J., Sreekumar S. 2002. Inhibition of digestive enzyme release by neuropeptides in the larvae of Opisina arenosella (Lepidoptera: Cryptophasidae). Comp. Biochem. Physiol. (B) 132 (2): 353–358.
 
9.
Harshini S., Reshmi V., Sreekumar S. 2003. A brain peptide stimulates release of amylase from the midgut tissue of larvae of Opisina arenosella Walk. (Lepidoptera: Cryptophasidae). Neuropeptides 37 (3): 133–139.
 
10.
Holman G.M., Cook B.J., Nachman R.J. 1987. Isolation, primary structure and synthesis of leucokinins VII and VIII: the final members of this new family of cephalomyotrophic peptides isolated from head extracts of Leucophaea maderae. Comp. Biochem. Physiol. (C) 88 (1): 31–34.
 
11.
Holman G.M., Nachman R.J., Wright M.S. 1990. Insect peptides. Annu. Rev. Entomol. 35: 201–217.
 
12.
Kramer K.J., Speirs R.D., Childs C.N. 1977. Immunological evidence for a gastrin-like peptide in insect neuroendocrine system. Gen. Comp. Endocrinol. 32: 423–426.
 
13.
Kramer K.J. 1985. Vertebrate hormones in insects. p. 511–536. In: “Comprehensive Insect Physiology, Biochemistry and Pharmacology” (G.A. Kerkut, L.I. Gilbert, eds.). Pergamon Press, New York, 8536 pp.
 
14.
Mohandass S., Arthur F.H., Zhu K.Y., Throne J.E. 2007. Biology and management of Plodia interpunctella (Lepidoptera: Pyralidae) in stored products. J. Stored Prod. Res. 43 (3): 302–311.
 
15.
Muraleedharan D., Prabhu V.K.K. 1979. Role of the median neurosecretory cells in secretion of protease and invertase in the red cotton bug, Dysdercus cingulatus. J. Insect Physiol. 25 (3): 237–240.
 
16.
Phillips T.W., Berbert R.C., Cuperus G.W. 2000. Post-harvest integrated pest management. p. 2690–2701. In: “Encyclopedia of Food Science and Technology” (F.J. Francis, ed.). 2nd ed. Wiley Inc., New York, 2816 pp.
 
17.
Prabhu V.K.K., Sreekumar S. 1994. Endocrine regulation of feeding and digestion in insects. p. 117–135. In: “Perspectives in Entomological Research” (O.P. Agarwal, ed.). Scientific Publishers, Jodhpur, India, 406 pp.
 
18.
Ramzi S., Hosseininaveh V. 2010. Biochemical characterization of digestive α-amylase, α-glucosidase and β-glucosidase in pistachio green stink bug, Brachynema germari Kolenati (Hemiptera: Pentatomidae). J. Asia-Pacific Entomol. 13 (3): 215–219.
 
19.
Sait S.M., Begon M., Thompson D.J., Harvey J.A., Hails R.S. 1997. Factors affecting host selection in an insect host-parasitoid interactions. Ecol. Entomol. 2 (1): 225–230.
 
20.
Satake S.I., Masumura M., Ishizaki H., Nagata K., Kataoka H., Suzuki A., Mizoguchi A. 1997. Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori. Comp. Biochem. Physiol. (B) 118 (2): 349–357.
 
21.
Sreekumar S., Prabhu V.K.K. 1988. Probable endocrine role of midgut tissue in stimulation of digestive enzyme secretion in Oryctes rhinoceros (Coleoptera: Scarabaeidae). Proc. Indian Acad. Sci. 97 (1): 73–78.
 
22.
Tabatabaei P.R., Hosseininaveh V., Goldansaz S.H., Talebi K. 2011. Biochemical characterization of digestive proteases and carbohydrases of the carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae). J. Asia-Pacific Entomol. 14 (2): 187–194.
 
23.
Terhzaz S., O’Connell F.C., Pollock V.P., Kean L., Davies S.A., Veenstra J.A., Dow J.A.T. 1999. Isolation and characterization of a leucokinin-like peptide of Drosophila melanogaster. J. Exp. Biol. 202 (24): 3667–3676.
 
24.
Verhaert P., Geysen J., De Loof A., Vandesande F. 1984. Immunoreactive material resembling vertebrate neuropeptides and neurophysins in the brain, suboesophageal ganglion, corpus cardiacum and corpus allatum of the dictyopteran Periplaneta americana L. J. Cell Tissue Res. 238: 55–59.
 
25.
Verhaert P., De Loof A. 1985. Immunocytochemical localization of a methionine-enkephalin-resembling neuropeptide in the central nervous system of the American cockroach, Periplaneta americana L. J. Comp. Neurol. 239: 54–61.
 
26.
Verhaert P., De Loof A. 1986. Substances resembling peptides of the vertebrate gonadotropin system occur in the central nervous system of Periplaneta americana L. Immunocytological and some biological evidence. Insect Biochem. 16 (1): 191–197.
 
27.
Yui R., Fujita T., Ito S. 1980. Insulin-, gastrin-, pancreatic polypeptide-like immunoreactivity neurons in the brain of the silkworm, Bombyx mori. Biomedical Res. 1: 42–46.
 
eISSN:1899-007X
ISSN:1427-4345