ORIGINAL ARTICLE
Symbiotic association between golden berry (Physalis peruviana) and arbuscular mycorrhizal fungi in heavy metal-contaminated soil
 
More details
Hide details
1
Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofi a, Bulgaria
2
Estación Experimental del Zaidín, CSIC, Professor Albareda 1, Granada 18008, Spain
CORRESPONDING AUTHOR
Marieta Hristozkova
Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofi a, Bulgaria
Submission date: 2017-02-14
Acceptance date: 2017-06-05
 
Journal of Plant Protection Research 2017;57(2):173–184
KEYWORDS
TOPICS
ABSTRACT
Physalis peruviana is one of the most promising tropical fruit plants because of its rapid growth, high yield, and nutritional quality. This study was designed to investigate plant development under heavy metal contamination (Cd, Pb) and responsiveness to arbuscular mycorrhizal fungi (AMF) colonization by Rhizophagus clarum and Claroideoglomus claroideum. The antioxidant capacity, total lipid content and fatty acid profile in fruits, accumulation of Cd and Pb in different plant parts, plant dry biomass, and mycorrhizal colonization were determined. As a result of inoculation, a considerable reduction in Cd and Pb in the fruits was observed, compared with non-inoculated plants. The fruit number and dry weight increased in plants associated with C. claroideum. These plants also showed higher acid phosphatase activity, root protein accumulation and glomalin production. The type of antioxidant defense was AMF strain-dependent. Antioxidant activity and H2O2 neutralization were enzymatic rather than non-enzymatic processes in the fruits of C. claroideum plants compared with those forming an association with R. clarum. Mycorrhizal establishment changed the composition and concentration of fruits’ fatty acids. The ratio of unsaturated fatty acids was increased. With respect to the accumulation of bioactive compounds in golden berry the present findings are important for obtaining the optimum benefits of mycorrhizal association under unfavorable conditions.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (57)
1.
Abd-Alla M.H. 1994. Use of organic phosphorus by Rhizobium leguminosarum biovar Viceae phosphatases. Biology and Fertility of Soils 18 (3): 216–218.
 
2.
Bano S.A, Ashfaq D. 2013. Role of mycorrhiza to reduce heavy metal stress. Natural Sciences 5 (12A): 16–20. DOI: https://doi.org/10.4236/ns.201....
 
3.
Beers F., Sizer I.F. 1952. A spectrophotometric method for measuring breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry 195 (1): 133–140.
 
4.
Benzie I., Strain J. 1996. The ferric reducing ability of plasma FRAP as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry 239 (1): 70–76. DOI: https://doi.org/10.1006/abio.1....
 
5.
Bradford M.M. 1976. A rapid and sensitive method for the estimation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72 (1–2): 248–254. DOI: https://doi.org/10.1006/abio.1....
 
6.
Cornejo P., Perez–Tienda J., Meier S., Valderas A., Borie F., Azcon-Aguilar C., Ferrol N. 2013. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biology and Biochemistry 57: 925–928. DOI: https://doi.org/10.1016/j.soil....
 
7.
Demir T., Özen M., Hameş-Kocabaş E. 2014. Antioxidant and cytotoxic activity of Physalis peruviana. Medicinal Plant Research 4 (3): 30–34. DOI: https://doi.org/10.5376/mpr.20....
 
8.
Doumett S., Lamperi L., Checchini L., Azzarello E., Mugnai S., Mancuso S., Petruzzelli G., Del Bubba M. 2008. Heavy metal distribution between contaminated soil and Paulownia tomentosa in a pilot–scale assisted phytoremediation study: Influence of different complexing agents. Chemosphera 72 (10): 1481–1490. DOI: https://doi.org/10.1016/j.chem....
 
9.
Eken A., Ünlü-Endirlik B., Baldemir A., İlgün S., Soykut B., Erdem O., Akay C. 2016. Antioxidant capacity and metal content of Physalis peruviana L. fruit sold in markets. Journal of Clinical and Analytical Medicine 7 (3): 291–294. DOI: https://doi.org/10.4328/jcam.2....
 
10.
Ferrol N., González-Guerrero M., Valderas A., Benabdellah K. Azcón-Aguilar C. 2009. Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochemistry Reviews 8 (3): 551–559. DOI: https://doi.org/10.1007/s11101....
 
11.
Ferrol N., Tamayo E., Vargas P. 2016. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany 67 (22): 6253–6265. DOI: https://doi.org/10.1093/jxb/er....
 
12.
Fischer G. 2000. Ecophysiological aspects of fruit growing in tropical highlands. Acta Horticulturae 531: 91–98. DOI: https://doi.org/10.17660/actah....
 
13.
Fu L., Xu B.T., Xu X.R., Gan R.Y., Zhang Y., Xia E.Q., Li H.B. 2011. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry 129 (2): 345–350. DOI: https://doi.org/10.1016/j.food....
 
14.
Giannopolitis C.N., Ries S.K. 1977. Superoxide dismutases I. Occurrence in higher plants. Plant Physiology 59 (2): 309–314. DOI: https://doi.org/10.1104/pp.59.....
 
15.
Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48 (12): 909–930. DOI: https://doi.org/10.1016/j.plap....
 
16.
Giovanetti M., Mosse B. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytopathology 84 (3): 489–500. DOI: https://doi.org/10.1111/j.1469....
 
17.
Hashem A., Abd Allah E.F., Alqarawi A.A., Al Huqail A.A., Egamberdieva D., Wirth S. 2016. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizafungi via induction of acquired systemic tolerance. Saudi Journal of Biological Sciences 23 (2): 272–281. DOI: https://doi.org/10.1016/j.sjbs....
 
18.
Hristozkova M., Geneva M., Stancheva I., Boychinova M., Djonova E. 2016. Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula offi cinalis development. Applied Soil Ecology 101: 57–63. DOI: https://doi.org/10.1016/j.apso....
 
19.
Icontec. 1999. Instituto Colombiano de Normas Tecnicas y Certificacion. Norma tecnica colombiana uchuva NTC 4580. Bogota. [Icontec. 1999. Columbian Institute of Technical Standards and Certification. Fresh fruits. Uchura (Physalis peruviana L.). Specifications. Columbian].
 
20.
Iliev I., Petkov G. 2006. Growth, lipids and fatty acids of the desert tolerant blue-green alga Arthronema africanum. Comptes rendus de l’Academie bulgare des Sciences 59 (10): 1079–1082.
 
21.
Jackson N.E., Franklin R.E., Miller R.H. 1972. Effects of vesicular-arbuscular mycorrhizae on growth and phosphorus content of three agronomic crops. Soil Science Society of America Proceedings 36 (1): 64–67. DOI: https://doi.org/10.2136/sssaj1....
 
22.
Li H., Luo N., Zhang L.J., Zhao H.M., Li Y.W., Cai Q.Y., Wong M.H., Mo C.H. 2016. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Science of the Total Environment 571: 1183–1190. DOI: https://doi.org/10.1016/j.scit....
 
23.
Liang C.C., Li T., Xiao Y.P., Liu M.L., Zhang H.B., Zhao Z.W. 2009. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. International Journal of Phytoremediation 11 (8): 692–703. DOI: https://doi.org/10.1080/152265....
 
24.
Meier S., Borie F., Bolan N., Cornejo P. 2012. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Critical Reviews in Environmental Science and Technology 42 (7): 741–775. DOI: https://doi.org/10.1080/106433....
 
25.
Miranda D., Fischer G., Ulrichs C. 2011. The influence of arbuscular mycorrhizal colonization on the growth parameters of Cape gooseberry (Physalis peruviana L.) plants grown in a saline soil. Journal of Soil Science and Plant Nutrition 11 (2): 18–30. DOI: https://doi.org/10.4067/s0718-....
 
26.
Miransari M. 2011. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances 29 (6): 645–653. DOI: https://doi.org/10.1016/j.biot....
 
27.
Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7 (9): 405–410. DOI: https://doi.org/10.1016/s1360-....
 
28.
Nakano Y., Asada K. 1987. Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiology 28 (1): 131–140. DOI: https://doi.org/10.1093/oxford....
 
29.
Nell M., Vötsch M., Vierheilig H., Steinkellner S., Zitterl–Eglseer K., Franz C. 2009. Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia offi cinalis L.). Journal of the Science of Food and Agriculture 89 (6): 1090–1096. DOI: https://doi.org/10.1002/jsfa.3....
 
30.
Noctor G., Foyer C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49 (1): 249–279. DOI: https://doi.org/10.1146/annure....
 
31.
Patterson B., MacRae E., Ferguson I.B. 1984. Estimation of hydrogen peroxide in plant extracts using titanium IV. Analytical Biochemistry 139 (2): 487–492. DOI: https://doi.org/10.1016/0003-2....
 
32.
Pfeff er H., Dannel F., Römheld V. 1998. Are there connection between phenol metabolism, ascorbate metabolism and membrane integrity in leaves of boron-deficient sunfl ower plants? Physiologia Plantarum 104 (3): 479–485. DOI: https://doi.org/10.1034/j.1399....
 
33.
Phillips J.M., Hayman D.S. 1970. Improved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55 (1): 158–161. DOI: https://doi.org/10.1016/s0007-....
 
34.
Prasad M.N.V. 2004. Heavy Metal Stress in Plants: From Biomolecules to Ecosystems. Springer Science & Business Media 462 pp. DOI: 10.1007/978–3–662–07743–6.
 
35.
Prasad K., Aggarwal A., Yadav K., Tanwar A. 2012. Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L. Journal of Soil Science and Plant Nutrition 12 (3): 451–462. DOI: https://doi.org/10.4067/s0718-....
 
36.
Prieto P., Pineda M., Aguilar M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry 269 (2): 337–341. DOI: https://doi.org/10.1006/abio.1....
 
37.
Puente L., Pinto-Munoz C., Castro E., Cortés M. 2011. Physalis peruviana L., multiple properties of a highly functional fruit: A review. Food Research International 44 (7): 1733–1740. DOI: https://doi.org/10.1016/j.food....
 
38.
Qin G., Meng X., Wang Tian S. 2009. Oxidative damage of mitochondrial proteins contributes to fruit senescence: A redox proteomics analysis. Journal of Proteome Research 8 (5): 2449–2462. DOI: https://doi.org/10.1021/pr8010....
 
39.
Racchi M. 2013. Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants 2 (4): 340–369. DOI: https://doi.org/10.3390/antiox....
 
40.
Radhika K., Rodrigues B. 2010. Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of Western Ghats, Goa region. Journal of Forest Research 21 (1): 45–52. DOI: https://doi.org/10.1007/s11676....
 
41.
Ramadan M., Mörsel J. 2003. Oil goldenberry (Physalis peruviana L.). Journal of Agricultural and Food Chemistry 51 (4): 969–974. DOI: 10.1021/jf020778z.
 
42.
Ramadan M., Mörsel J. 2007. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberrry (Physalis peruviana L.) juice. Journal of the Science of Food Agriculture 87 (3): 452–460. DOI: https://doi.org/10.1002/jsfa.2....
 
43.
Rillig M., Wright S., Eviner V. 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil 238 (2): 325–333. DOI: 10.1023/A:1014483303813.
 
44.
Schützendübel A., Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53 (372): 1351–1365. DOI: https://doi.org/10.1093/jexbot....
 
45.
Schneider K., Turrion M., Gallardo J. 2000. Modified method for measuring acid phosphatase activities in forest soils with high organic matter content. Communications in Soil Science and Plant Analyzes 31 (19–20): 3077–3088. DOI: https://doi.org/10.1080/001036....
 
46.
State newspaper. 2008. Regulation No. 3. State newspaper, No. 71, August 12, 2008.
 
47.
Tepe B., Sokmen M., Akpulat H.A., Sokmen A. 2006. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chemistry 95 (2): 200–204. DOI: https://doi.org/10.1016/j.food....
 
48.
Upadhyaya H., Panda S.K., Bhattacharjee M.K., Dutta S. 2010. Role of arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. Journal of Phytology 2 (7): 16–27.
 
49.
Upchurch R.G. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters 30 (6): 967–977. DOI: https://doi.org/10.1007/s10529....
 
50.
Urbanek H., Kuzniak-Gebarowska E., Herka K. 1991. Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiologia Plantarum 13: 43–50.
 
51.
Valdenegro M., Fuentes L., Herrera R., Moya-León M. 2012. Changes in antioxidant capacity during development and ripening of goldenberry (Physalis peruviana L.) fruit and in response to 1-methylcyclopropene treatment. Postharvest Biology and Technology 67: 110–117. DOI: https://doi.org/10.1016/j.post....
 
52.
van Aarle I., Olsson P., Söderström B. 2002. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytologist 155 (1): 173–182. DOI: https://doi.org/10.1046/j.1469....
 
53.
Vasco C., Ruales J., Kamal-Eldin A. 2008. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry 111 (4): 816–823. DOI: https://doi.org/10.1016/j.food....
 
54.
Wright S., Upadhyaya A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science 161 (9): 575–586. DOI: https://doi.org/10.1097/000106....
 
55.
Yıldız G., İzli N., Ünal H., Uylaşer V. 2015. Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). Journal of Food Science and Technology 52 (4): 2320–2327. DOI: https://doi.org/10.1007/s13197....
 
56.
Zhishen J., Mengcheng T., Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64 (4): 555–559. DOI: https://doi.org/10.1016/s0308-....
 
57.
Ziedan E-S., Elewa I., Mostafa M., Sahab S. 2011. Application of mycorrhizae for controlling root diseases of sesame. Journal of Plant Protection Research 51 (4): 355–361. DOI: https://doi.org/10.2478/v10045....
 
eISSN:1899-007X
ISSN:1427-4345