ORIGINAL ARTICLE
The reaction of tomato plants carrying Mi-1 gene to different inoculation densities of Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949
 
More details
Hide details
1
Plant Protection, Akdeniz University Faculty of Agriculture, Department of Plant Protection, Faculty of Agriculture, University of Akdeniz, Antalya, Turkey
Submission date: 2017-09-23
Acceptance date: 2018-01-02
 
Journal of Plant Protection Research 2018;58(2):124–129
KEYWORDS:
TOPICS:
ABSTRACT:
The response of the Mi-1 gene to different densities of Meloidogyne incognita race 2 was investigated under controlled conditions. Susceptible and resistant tomato seedlings were inoculated with 25, 50, 100, 200, 400, 1000, 2000, 5000 and 10000 second-stage juveniles of M. incognita. Plants were uprooted 8 weeks after inoculation and the numbers of egg masses and galls on the roots, and second-stage juveniles in 100 g soil per pot were counted. In susceptible plants, there was a correlation between the number of egg masses on roots until 2000 J2 inoculum densities. In resistant plants, when inoculum densities increased, the number of egg masses and galls also increased. The reproduction factor ratio was > 1 in the susceptible plant and < 1 in the resistant plant. The data showed that the 5000 J2 inoculum was a critical limit, and 10000 J2s were above threshold for resistant plants. The data indicate that densities of M. incognita can seriously affect the performance of the Mi-1 gene.
CORRESPONDING AUTHOR:
Zübeyir Devran   
Plant Protection, Akdeniz University Faculty of Agriculture, Department of Plant Protection, Faculty of Agriculture, University of Akdeniz, 07058 Antalya, Turkey
 
REFERENCES (38):
1. Abdul-Baki A.A., Haroon S.A., Chitwood D.J. 1996. Temperature effects on resistance to Meloidogyne spp. in excised tomato roots. HortScience 31 (1): 147–149.
  WWW
2. Araujo M.T., Bassett M.J., Augustine J.J., Dickson D.W. 1982a. Effects of the temperature and duration of the initial incubation period on resistance to Meloidogyne incognita in tomato. Journal of Nematology 14 (3): 411–413.
  WWW
3. Araujo M.T., Dickson D.W., Augustine J.J., Bassett M.J. 1982b. Optimum initial inoculum levels for evaluation of resistance in tomato to Meloidogyne spp. at two different soil temperatures. Journal of Nematology 14 (4): 536–540.
4. Castagnone-Sereno P. 1994. Genetics of Meloidogyne virulence against resistance genes from Solanaceous crop. p. 261–276. In: “Advances in Molecular Plant Nematology” (F. Lamberti, C. Giorgi, D.M.K. Bird, eds.). Plenum Press, NY, 309 pp.
5. Cook R., Starr J.L. 2006. Resistant cultivars. p. 370–389. In: “Plant Nematology” (R.N. Perry, M. Moens, eds.) British Library, London, 447 pp.
6. Devran Z., Söğüt M.A. 2009. Distribution and identification of root-knot nematodes from Turkey. Journal of Nematology 41 (2): 128–133.
7. Devran Z., Söğüt M.A. 2010. Occurrence of virulent root-knot nematode populations on tomatoes bearing the Mi gene in protected vegetable-growing areas of Turkey. Phytoparasitica 38 (3): 245–251. DOI: https://doi.org/10.1007/s12600....
8. Devran Z., Söğüt M.A., Mutlu N. 2010. Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures. Phytopathologia Mediterranea 49: 11–17.
9. Devran Z., Söğüt M.A. 2011. Characterizing races of Meloidogyne incognita, M. javanica and M. arenaria in the West Mediterranean region of Turkey. Crop Protection 30 (4): 451–455. DOI: https://doi.org/10.1016/j.crop....
10. Devran Z., Başköylü B., Taner A., Doğan F. 2013. Comparison of PCR-based molecular markers for identification of Mi gene. Acta Agriculturae Scandinavica, Section B – Soil and Plant Science 63: 395–402.
11. Devran Z., Söğüt M.A. 2014. Response of heat-stable tomato genotypes to Mi-1 virulent root-knot nematode populations. Turkish Journal of Entomology 38 (3): 229–238. DOI: https://doi.org/10.16970/ted.5....
12. Di Vito M., Ekanayake H.M.R.K. 1983. Relationship between population densities of Meloidogyne incognita and growth of resistant and susceptible tomato. Nematologia Mediterranea 11 (2): 151‒155.
13. Dropkin V.H. 1969. The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: Reversal by temperature. Phytopathology 59: 1632–1637.
14. Ferris H., Noling J.W. 1987. Analysis and prediction as a basis for management decisions. p. 49–81. In: “Principles and Practice of Nematode Control in Crops” (R.H. Brown, ed.). Academic Press, Sydney, New York, London, Montreal, Tokyo, 447 pp.
15. Haroon S.A., Baki A.A., Huettel R.N. 1993. An in vitro test for temperature sensitivity and resistance to Meloidogyne incognita in tomato. Journal of Nematology 25: 83–88.
16. Hooper D.J. 1986. Extraction of free-living stages from soil. p. 5–30. In: “Laboratory Methods for Work with Plant and Soil Nematodes” (J.F. Southey, ed.). Her Majesty’s Stationery Office, London, 202 pp.
17. Kaloshian I., Williamson V.M., Miyao G., Lawn D., Westerdahl B.B. 1996. Resistance-breaking nematodes identified in California tomatoes. California Agriculture 50: 9–18.
18. Karssen G., Moens M. 2006. Root-knot nematodes. p. 59–90. In: “Plant Nematology” (R.N. Perry, M. Moens, eds.). CAB International, Wallingford, UK, 447 pp.
19. Khan H., Ahmad R., Akhtar A.S., Mahmood A., Basit T., Niaz T. 2000. Effect of inoculum density of Meloidogyne incognita and plant age on the severity of root-knot disease in tomato. International Journal of Agriculture and Biology 2: 360–363.
20. Kankam F., Adomako J. 2014. Influence of inoculum levels of root knot nematodes (Meloidogyne spp.) on tomato (Solanum lycopersicum L.). Asian Journal of Agriculture and Food Sciences 2: 171–178.
21. Maleita C.M.N., Curtis R.H.C., Powers S.J., Abrantes I.M. 2012. Inoculum levels of Meloidogyne hispanica and M. javanica affect nematode reproduction, and growth of tomato genotypes. Phytopathologia Mediterranea 51: 566−576.
22. Mıstanoglu İ, Özalp T., Devran Z. 2016. Response of tomato seedlings with different number of true leaves to Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949. Turkish Journal of Entomology 40 (4): 377–383. DOI: https://doi.org/10.16970/ted.8....
23. Milligan S.B., Bodeau J., Yaghoobi J., Kaloshian I., Zabel P., Williamson V.M. 1998. The root-knot resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine rich repeat family of plant genes. Plant Cell 10 (8): 1307–1319. DOI: https://doi.org/10.1105/tpc.10....
24. Moens M., Perry R.N., Starr J.L. 2009. Meloidogyne species – a diverse group of novel and important plant parasites. p. 1–17. In: “Root-Knot Nematodes” (R.N. Perry, M. Moens, J.L. Starr, eds.). CAB International, Wallingford, 488 pp.
25. Nombela G., Williamson V.M., Muniz M. 2003. The root-knot nematode resistance gene Mi.1.2 of tomato irresponsible for resistance against the whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions 16 (7): 645–649. DOI: https://doi.org/10.1094/mpmi.2....
26. Nyczepir A.P., Thomas S.H. 2009. Current and future management strategies in intensive crop production systems. p. 412–443. In: “Root-Knot Nematodes” (R.N. Perry, M. Moens, J.L. Starr, eds.). CAB International, Wallingford, 488 pp.
27. Ornat C., Verdejo-Lucas S., Sorribas F.J. 2001. A population of Meloidogyne javanica in Spain virulent to the Mi resistance gene in tomato. Plant Disease 85: 271–276.
28. Randig O., Bongiovanni M., Carneiro R.M.D.G., Castagnone-Sereno P. 2002. Genetic diversity of root-knot nematodes from Brazil and development of SCAR marker specific for the coffee damaging species. Genome 45 (5): 862–870. DOI: https://doi.org/10.1139/g02-05....
29. Roberts P.A., Thomason I.J. 1986. Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Disease 70 (6): 547–551. DOI: https://doi.org/10.1094/pd-70-....
30. Rossi M., Goggin F.L., Milligan S.B., Kaloshian I., Ullman D.E., Williamson V.M. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences 95: 9750–9754.
31. Schomaker C.H., Been T.H. 2006. Plant growth and population dynamics. p. 275–301. In: “Plant Nematology” (R.N. Perry, M. Moens, eds.). CAB International, Wallingford, UK, 447 pp.
32. Seid A., Fininsa C., Mekete T., Decraemer W., Wesemael W.M. 2015. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.) – a century-old battle. Nematology 17 (9): 995–1009. DOI: https://doi.org/10.1163/156854....
33. Seah S., Williamson V.M., Garcia B.E., Mejia L., Salus M.S., Martin C.T., Maxwell D.P. 2007. Evaluation of a codominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Tomato Genetics Cooperative Report 57: 37–40.
  WWW
34. Sharma I.P., Sharma A.K. 2015. Effects of initial inoculums levels of Meloidogyne incognita J2 on development and growth of Tomato cv. PT-3 under control conditions. African Journal of Microbiology Research 9 (20): 1376–1380. DOI: https://doi.org/10.5897/ajmr20....
35. Smith P.G. 1944. Embryo culture of a tomato species hybrid. Proceedings of the American Society for Horticultural Science 44: 413–416.
36. Wesemael W.M.L., Viaene N., Moens M. 2011. Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology 13: 3–16.
37. Williamson V.M., Hussey R.S. 1996. Nematode pathogenesis and resistance in plants. Plant Cell 8 (10): 1735–1745. DOI: https://doi.org/10.1105/tpc.8.....
38. Williamson V.M. 1999. Plant nematode resistance genes. Current Opinion in Plant Biology 2 (4): 327–331. DOI: https://doi.org/10.1016/s1369-....
eISSN:1899-007X
ISSN:1427-4345