ORIGINAL ARTICLE
Life table and fertility rate of Liriomyza sativae (Blanchard) (Diptera: Agromyzidae) in tomato with silicon
More details
Hide details
1
Entomology Department, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
2
Entomology Department, Universidade Federal do Espírito Santo, Campus Alegre, Alegre, Brazil
3
Biology Department, Universidade Federal do Espírito Santo, Campus Alegre, Alegre, Brazil
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2020-11-24
Acceptance date: 2020-12-30
Online publication date: 2021-06-19
Corresponding author
Julielson Oliveira Ataide
Entomology, Universidade Federal do Espírito Santo - Campus Alegre, Alto Universitário- s/n, 0, 29.500-000, Alegre, Brazil
Journal of Plant Protection Research 2021;61(2):131-138
KEYWORDS
TOPICS
ABSTRACT
The miner fly Liriomyza sativae (Blanchard) (Diptera: Agromyzidae) is an insect of economic
importance for tomato culture. The conventional control with insecticides is complex
due to the mining eating habit that provides protection to the larvae inside the leaves.
Therefore, farmers can opt for biological control agents, or substances that provide protection
to the plant. Thus, the objective of our research was to evaluate the use of silicon to induce
resistance in tomato plants against L. sativae. The results showed that in tomato plants
treated with SiO2/F and K2SiO3/F there was a reduction in the net reproduction rate (Ro),
in the intrinsic rate of increase in number (rm), in the finite rate of increase (λ), in the average
interval between generations (IMG), in the doubling time (TD), in the number of eggs/
female/day and the accumulated egg laying of F1 females of L. sativae. The products SiO2/F
and K2SiO3/F gave the tomato a protective effect against injuries caused by L. sativae.
ACKNOWLEDGEMENTS
We are grateful to
Dr. Karla Diana da Silva Sombra for the morphological
and molecular taxonomy of L. sativae and to the
GTS chemistry group for their partnership in the
project.
FUNDING
We wish to thank Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (CAPES) for funding
the first author’s scholarship.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (33)
2.
Andrade C.C.L., Resende R.S., Rodrigues F.Á., Ferraz H.G.M., Moreira W.R., Oliveira J.R., Mariano R.L.R. 2013. Silicon reduces bacterial speck development on tomato leaves. Tropical Plant Pathology 38: 436–442.
3.
Araujo E.L., Fernandes D.R.R., Geremias L.D., Menezes-Netto A.C, Filgueira M.A. 2007. Occurrence of leafminer Liriomyza trifolii (Burgess) (Diptera: Agromyzidae), losts end its parasitoid, in Cucumis melo L., in the semi-arid of the Rio Grande do Norte. Caatinga 20 (3): 210–212.
4.
Araujo E.L., Nogueira C.H.F., Menezes Netto A.C., Bezerra C.E.S. 2013. Biological aspects of the leafminer Liriomyza sativae (Diptera: Agromyzidae) on melon (Cucumis melo L.). Ciência Rural 43: 579–582. DOI:
http://doi.org/10.1590/S0103-8....
5.
Awmack C.S., Leather S.R. 2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47: 817–844.
6.
Buck G.B., Korndörfer G.H., Nolla A., Coelho L. 2008. Potassium silicate as foliar spray and rice blast control. Journal of Plant Nutrition 31: 231.
7.
Chérif M., Asselin A., Bélanger R.R. 1994. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84: 236–242.
8.
Colosimo E.A., Giolo S.R. 2006. Applied survival analysis. 1st ed. Edgard Blücher, São Paulo, Brasil, 392 pp. (in Portuguese)
9.
Coskun D., Deshmukh R., Sonah H., Menzies J.G., Reynolds O., M.A J.F., Kronzucker H.J. Bélanger R.R. 2019. The controversies of silicon’s role in plant biology. New Phytologist 221: 67–85.
10.
Datnoff L.E., Snyder G.H., Korndörfer G.H. 2001. Silicon in agriculture. Amsterdam: Elsevier. Book Series Studies in Plant Science 8: 424.
11.
Fauteux F., Rémus-Borel W., Menzies J.G., Bélanger R.R. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology 249: 1–6. DOI:
http://doi.org/10.1016/j.femsl....
12.
Foba C.N., Salifu D., Lagat Z.O., Gitonga L.M., Akutse K.S., Fiaboe K.K.M. 2015. Liriomyza leafminer (Diptera: Agromyzidae) parasitoid complex in different agroecological zones, seasons, and host plants in Kenya. Environmental Entomology 45: 357–366. DOI:
http://doi.org/10.1093/ee/nvv2....
13.
Gomes F.B., Moraes J.C., Neri D.K.P. 2009. Fertilization with silicon as resistance factor to pest insects and promoter of productivity in the potato crop in an organic system. Ciência e Agrotecnologia 33: 18–23. DOI:
http://doi.org/10.1590/S1413-7... (in Portuguese).
14.
Gomes F.B., Moraes J.C.D., Santos C.D.D., Goussain M.M. 2005. Resistance induction in wheat plants by silicon and aphids. Scientia Agricola 62 (6): 547–551. DOI:
http://doi.org/10.1590/S0103-9....
15.
Goussain M.M., Moraes J.C., Carvalho J.G., Nogueira N.L., Rossi M.L. 2002. Effect of the application of silicon on maize plants on the biological development of the cartridge caterpillar Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotropical Entomology 31: 305–310. DOI:
http://doi.org/10.1590/S1519-5....
16.
Goussain M.M., Prado E., Moraes J.C. 2005. Effect of silicon applied to wheat plants on the biology and probing behavior of the greenbug Shizaphis graminum (Rond.) (Hemiptera: Aphididae). Neotropical Entomology 34: 807–813.
17.
Hao P., Liu C., Wang Y., Chen R., Tang M., Du B., Zhu L. He G. 2008. Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiology 146: 1810–1820.
18.
Jeer M., Telugu U.M., Voleti S.R., Padmakumari A.P. 2017. Soil application of silicon reduces yellow stem borer, Scirpophaga incertulas (Walker) damage in rice. Journal of Applied Entomology 141: 189–201. DOI:
http://doi.org/10.1111/jen.123....
19.
Kvedaras O.L., Byrne M.J., Coombes N.E., Keeping M.G. 2009. Influence of plant silicon and sugarcane cultivar on mandibular wear in the stalk borer Eldana saccharina. Agricultural and Forest Entomology 11: 301–306. DOI:
http://doi.org/10.1111/j.1461-....
20.
Leather S.R. 1985. Oviposition preferences in relation to larval growth rates and survival in the pine beauty moth, Panolis flammea. Ecological Entomology 10: 213–217.
21.
Lichtenthaler H.K. 1998. The stress concept in plants: an introduction. p. 187–198. In: “Stress of Life: From Molecules to Man” (P. Csermely, ed.). Annals of the New York Academy of Sciences, NY, USA.
22.
Maia A.D.H.N., Luiz A.J.B. 2006. SAS for analysis of life table and fertility arthropod: the Jackknife method. Comunicado Técnico 33: 1–11. (in Portuguese).
23.
Maia A.H.N., Luiz A.J.B. Campanhola C. 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. Journal of Economic Entomology 93: 511–518. DOI:
http://doi.org/10.1603/0022-04....
24.
Migiro L.N., Maniania N.K., Chabi-Olaye A., Wanjoya A., Vandenberg J. 2011. Effect of infection by Metarhizium anisopliae (Hypocreales: Clavicipitaceae) on the feeding and oviposition of the pea leafminer Liriomyza huidobrensis (Diptera: Agromyzidae) on different host plants. Biological Control 56 (2): 179–183. DOI:
http://doi.org/10.1016/j.bioco....
26.
Musundire R., Chabi Olaye A., Krüger K. 2012. Host plant effects on morphometric characteristics of Liriomyza huidobrensis, L. sativae and L. trifolii (Diptera: Agromyzidae). Journal of Applied Entomology 136: 97–108. DOI:
http://doi.org/10.1111/j.1439-....
27.
Novaes R.F., Neves J.C.L., Barros N.F. 1991. Test in a controlled environment. Research Methods in Soil Fertility. 1st. ed. (in Portuguese).
28.
Pohl D., Kühne S., Karaca İ., Moll E. 2012. Review of Coenosia attenuata Stein and its first record as a predator of important greenhouse pests in Turkey. Phytoparasitica 40: 63–68. DOI:
http://doi.org/10.1007/s12600-....
29.
Pratissoli D., Carvalho J.R., Pastori P.L., Bueno R.D.F., Zago H.B. 2015. Incidence of leaf miner and insect vectors for pest management systems in the tomato. Revista Ciência Agronômica 46: 607–614. DOI:
http://doi.org/10.5935/1806-66....
30.
Reynolds O.L., Keeping M.G., Meyer J.H. 2009. Silicon augmented resistance of plants to herbivorous insects: a review. Annals of Applied Biology 155: 171–186.
31.
Santos M.C., Junqueira M.R., Sá V.M., Zanúncio J.C., Serrão J. 2015. Effect of silicon on the morphology of the midgut and mandible of tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae) larvae. Invertebrate Survival Journal 12: 158–165.
32.
Swain T., Hillis W.E. 1959. The phenolic constituents of Prunus domestica – the quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture 10: 63–68. DOI:
http://doi.org/10.1002/jsfa.27....
33.
Vieira D.L., Oliveira B.V., Souza W.C.O., Silva J.G., Malaquias J.B., Luna B.J. 2016. Potassium silicate-induced resistance against blackfly in seedlings of Citrus reticulata. Fruits 71: 49–55. DOI:
http://doi.org/10.1051/fruits/....