ORIGINAL ARTICLE
 
KEYWORDS
TOPICS
ABSTRACT
The shipment of cut flowers from Colombia and Ecuador to the United States, the biggest importer of this product in the world, has doubled in the last 20 years. One of the main constraints in cut roses production is the gray mold disease caused by the fungus Botrytis cinerea, which can destroy the flowers, in the crop, during storage and/or shipping. Since the resistance of the fungus to conventional fungicides has been increasing, as well as the health effects in rose growers, alternative approaches for controlling the disease are needed. The effect of UV-C light on the gray mold development in cut roses was studied. Irradiation with 2,160; 1,080 and 540 J ⋅ m–2 UV-C, every 24 h for 5 days in a humid chamber, did not harm the roses. Instead, as seen by image analysis, a highly significant reduction of the area of the lesions by the disease and of the fungus germination was obtained at 1,080 J ⋅ m–2. The addition of a 4-h dark period to the irradiation did not improve the effect of UV-C on the disease. The results of this work potentiate the use of UV-C light in the agro-industry as a low-cost and non-invasive alternative method to control diseases. They also reflect the application of optical approaches as image analysis in the evaluation of important agricultural features.
FUNDING
The authors are grateful to the company Inversiones Coquette S.A for supplying the roses for the experiments and with the Politécnico Colombiano Jaime Isaza Cadavid for funding [grant number 2061080336].
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (72)
1.
Álvarez-Medina A., Silva-Rojas H.V., Leyva-Mir S.G., Marbán-Mendoza N., Rebollar-Alviter Á. 2017. Resistance of Botrytis cinerea from strawberry (Fragaria x ananassa Duch.) to fungicides in Michoacan Mexico. Agrociencia 51: 783–798.
 
2.
Asocolflores (Asociación colombiana de exportadores de flores). 2017. Nota 3 del Boletín estadístico Septiembre 2017 – Dirección económica y logística. (in Spanish).
 
3.
Bardas G.A., Myresiotis C.K., Karaoglanidis G.S. 2008. Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology 98: 443–450. DOI: https://doi.org/10.1094/PHYTO-....
 
4.
Ben-Yehoshua S., Rodov V., Kim J.J., Carmeli S. 1992. Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. Journal of Agricultural and Food Chemistry 40: 1217–1221. DOI: https://doi.org/10.1021/jf0001....
 
5.
Card S.D., Walter M., Jaspers M.V., Sztejnberg A., Stewart A. 2009. Targeted selection of antagonistic microorganisms for control of Botrytis cinerea of strawberry in New Zealand. Australasian Plant Pathology 38: 183–192. DOI: https://doi.org/10.1071/AP0809....
 
6.
Charles M.T., Benhamou N., Arul J. 2008a. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. III. Ultrastructural modifications and their impact on fungal colonization. Postharvest Biology and Technology 47: 27–40. DOI: https://doi.org/10.1016/j.post....
 
7.
Charles M.T., Goulet A., Arul J. 2008b. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. IV. Biochemical modification of structural barriers. Postharvest Biology and Technology 47: 41–53. DOI: https://doi.org/10.1016/j.post....
 
8.
Charles M.T., Makhlouf J., Arul J. 2008c. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. II. Modification of fruit surface and changes in fungal colonization. Postharvest Biology and Technology 47: 21–26. DOI: https://doi.org/10.1016/j.post....
 
9.
Charles M.T., Mercier J., Makhlouf J., Arul J. 2008d. Physiological basis of UV-C-induced resistance to Botrytis cinerea in tomato fruit. I. Role of pre- and post-challenge accumulation of the phytoalexin-rishitin. Postharvest Biology and Technology 47: 10–20. DOI: https://doi.org/10.1016/j.post....
 
10.
Charles M.T., Tano K., Asselin A., Arul. J. 2009. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. V. Constitutive defence enzymes and inducible pathogenesis-related proteins. Postharvest Biology and Technology 51: 414–424. DOI: https://doi.org/10.1016/j.post....
 
11.
Chen P-H., Chen R-Y., Chou J-Y. 2018. Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits. Mycobiology 46: 33–46. DOI: https://doi.org/10.1080/122980....
 
12.
Chu E., Shin E., Park H., Jeong R. 2015a. Effect of gamma irradiation on Botrytis cinerea causing gray mold and cut chrysanthemum flowers. Research in Plant Disease 21: 193–200. DOI: https://doi.org/10.5423/RPD.20....
 
13.
Chu E.H., Shin E.J., Park H.J., Jeong R.D. 2015b. Effect of gamma irradiation and its convergent treatment for control of postharvest Botrytis cinerea of cut roses. Radiation Physics and Chemistry 115: 22–29. DOI: https://doi.org/10.1016/j.radp....
 
14.
Cole L., Dewey F.M., Hawes C.R. 1996. Infection mechanisms of Botrytis species: pre-penetration and pre-infection processes of dry and wet conidia. Mycological Research 100: 277–286. DOI: https://doi.org/10.1016/S0953-....
 
15.
Costa L.B., Rangel D.E.N., Morandi M.A.B., Bettiol W. 2013. Effects of UV-B radiation on the antagonistic ability of Clonostachys rosea to Botrytis cinerea on strawberry leaves. Biological Control 65: 95–100. DOI: https://doi.org/10.1016/j.bioc....
 
16.
Darras A.I., Demopoulos V., Tiniakou C. 2012. UV-C irradiation induces defence responses and improves vase-life of cut gerbera flowers. Postharvest Biology and Technology 64: 168–174. DOI: https://doi.org/10.1016/j.post....
 
17.
Darras A.I., Joyce D.C., Terry L.A. 2010. Postharvest UV-C irradiation on cut Freesia hybrida L. inflorescences suppresses petal specking caused by Botrytis cinerea. Postharvest Biology and Technology 55: 186–188. DOI: https://doi.org/10.1016/j.post....
 
18.
de Capdeville G., Wilson C.L., Beer S.V., Aist J.R. 2002. Alternative disease control agents induce resistance to blue mold in harvested ‘red delicious’ apple fruit. Phytopathology 92: 900–908. DOI: https://doi.org/10.1094/PHYTO.....
 
19.
Dik A.J., Wubben J.P. 2007. Epidemiology of Botrytis cinerea diseases in greenhouses. p. 319–333. In: “ Botrytis: Biology, Pathology and Control” (Y. Elad, B. Williamson, P. Tudzynski, N. Delen, eds.). Springer, Dordrecht: Dordrecht. DOI: https://doi.org/10.1007/978-1-....
 
20.
Doss R.P., Potter S.W., Chastagner G.A., Christian J.K. 1993. Adhesion of nongerminated Botrytis cinerea conidia to several substrata. Applied and Environmental Microbiology 59: 1786–1791.
 
21.
Elad Y. 1988. Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Protection 7: 361–366. DOI: 10.1016/0261-2194(88)90003-8.
 
22.
Elad Y., Zimand G., Zaqs Y., Zuriel S., Chet I. 1993. Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathology 42: 324–332. DOI: https://doi.org/10.1111/j.1365....
 
23.
Gleason M.L., Helland S.J. 2003. DISEASE | Botrytis. Encyclopedia of Rose Science: 144–148. DOI: https://doi.org/10.1016/B0-12-....
 
24.
Gutiérrez D., Ruiz G., Sgroppo S., Rodríguez S. 2016. Radiation in the elaboration process of IV gamma vegetables. Agrociencia Uruguay 20: 7–13. (in Spanish).
 
25.
Hao Y., Cao X., Ma C., Zhang Z., Zhao N., Ali A., Hou T., Xiang Z., Zhuang J., Wu S., Xing B., Zhang Z., Rui Y. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science 8: 1–9. DOI: https://doi.org/10.3389/fpls.2....
 
26.
Janisiewicz W.J., Takeda F., Glenn D.M., Camp M.J., Jurick W.M. 2016. Dark period following UV-C treatment enhances killing of Botrytis cinerea conidia and controls gray mold of strawberries. Phytopathology 106: 386–394. DOI: https://doi.org/10.1094/PHYTO-....
 
27.
Jiang C-H., Liao M-J., Wang H-K., Zheng M-Z., Xu J-J., Guo J-H. 2018. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biological Control 126: 147–157. DOI: https://doi.org/10.1016/j.bioc....
 
28.
Jin P., Wang H., Zhang Y., Huang Y., Wang L., Zheng Y. 2017. UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit. Scientia Horticulturae 225: 106–111. DOI: https://doi.org/10.1016/j.scie....
 
29.
Kang H.R. 2006. Computational Color Technology. SPIE Press. SPIE Press: Bellingham. DOI: https://doi.org/10.1007/s13398....
 
30.
Karasahin Yildirim I., Pekmezci M. 2017. Postharvest ultraviolet-C (UV-C) treatment reduces decay and maintains quality of bell peppers. Akademik Ziraat Dergisi 6: 89–94. DOI: https://doi.org/10.29278/azd.3....
 
31.
Konstantinou S., Veloukas T., Leroch M., Menexes G., Hahn M., Karaoglanidis G. 2015. Population structure, fungicide resistance profile, and sdhB mutation frequency of Botrytis cinerea from strawberry and greenhouse-grown tomato in Greece. Plant Disease 99: 240–248. DOI: https://doi.org/10.1094/pdis-0....
 
32.
Kretschmer M., Hahn M. 2008. Fungicide resistance and genetic diversity of Botrytis cinerea isolates from a vineyard in Germany. Journal of Plant Diseases and Protection 115: 214–219. DOI: https://doi.org/10.1007/bf0335....
 
33.
Kuniga T., Nakajima N., Hirohisa N., Fumitaka T. 2015. UV-C irradiation reduces gray mold decay and enhances the accumulation of scoparone in some citrus species. Tropical Agriculture and Development 59: 41–49. DOI: https://doi.org/10.11248/jsta.....
 
34.
Lado B.H., Yousef A.E. 2002. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes and Infection 4: 433–440. DOI: https://doi.org/10.1016/S1286-....
 
35.
Latorre B.A., Rioja M.E., Lillo C. 2002. Effect of temperature on the development of Botrytis cinerea infection in flowers and berries of table grapes (in Spanish). Ciencia e investigación Agraria: Revista Latinoamericana de Ciencias de la Agricultura 9: 145–151.
 
36.
Levetin E., Shaughnessy R., Rogers C.A., Scheir R. 2001. Effectiveness of germicidal UV radiation for reducing fungal contamination within air-handling units. Applied and Environmental Microbiology 67: 3712–3715. DOI: https://doi.org/10.1128/AEM.67....
 
37.
Liu J., Stevens C., Khan V.A., Lu J.Y., Wilson C.L., Adeyeye O., Kabwe M.K., Pusey P.L., Chalutz E., Sultana T., Droby S. 1993. Application of ultraviolet-C light on storage rots and ripening of tomatoes. Journal of Food Protection 56: 868–873. DOI: https://doi.org/10.4315/0362-0....
 
38.
López Cruz J., Crespo Salvador Ó., Fernández Crespo E., García Agustín P., González Bosch C. 2017. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways. Molecular Plant Pathology 18: 16–31. DOI: https://doi.org/10.1111/mpp.12....
 
39.
Loyola C.E., Dole J.M., Dunning R. 2019. South and Central America cut flower production and postharvest survey. HortTechnology 29: 898–905. DOI: https://doi.org/10.21273/HORTT....
 
40.
Marquenie D., Geeraerd A.H., Lammertyn J., Soontjens C., Van Impe J.F., Michiels C.W., Nicolaï B.M. 2003. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. International Journal of Food Microbiology 85: 185–196. DOI: https://doi.org/10.1016/S0168-....
 
41.
Marquenie D., Lammertyn J., Geeraerd A.H., Soontjens C., Van Impe J.F., Nicola B.M., Michiels C.W. 2002. Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment. International Journal of Food Microbiology 74: 27–35. DOI: https://doi.org/10.1016/S0168-....
 
42.
Mercier J., Arul J., Julien C. 1993. Effect of UV-C on phytoalexin accumulation and resistance to Botrytis cinerea in stored carrots. Journal of Phytopathology 139: 17–25. DOI: https://doi.org/10.1111/j.1439....
 
43.
Mercier J., Baka M., Reddy B., Corcuff R., Arul J. 2001. Shortwave ultraviolet irradiation for control of decay caused by Botrytis cinerea in bell pepper: induced resistance and germicidal effects. Journal of the American Society for Horticultural Science 126: 128–133. DOI: https://doi.org/10.21273/JASHS....
 
44.
Mercier J., Roussel D., Charles M-T., Arul J. 2000. Systemic and local responses associated with UV- and pathogeninduced resistance to Botrytis cinerea in stored carrot. Phytopathology 90: 981–986. DOI: https://doi.org/10.1094/phyto.....
 
45.
Mohamed N.T.S., Ding P., Ghazali H.M., Kadir J. 2017. Biochemical and cell wall ultrastructural changes in crown tissue of banana (Musa AAA ‘Berangan’) fruit as mediated by UVC irradiation against crown rot fungal infection. Postharvest Biology and Technology 128: 144–152. DOI: https://doi.org/10.1016/j.post....
 
46.
Nigro F., Ippolito A., Lima G. 1998. Use of UV-C to reduce storage rot of table grapes. Postharvest Biology and Technology 13: 171–181. DOI: https://doi.org/10.1016/S0925-....
 
47.
Nigro F., Ippolito A. 2016. UV-C light to reduce decay and improve quality of stored fruit and vegetables: A short review. Acta Horticulturae 1144: 293–298. DOI: https://doi.org/10.17660/ActaH....
 
48.
Ortega Martínez L.D., Ocampo Mendoza J., Olvera Salinas J., Zarate Rivas F., Rojas Reyes F., Salazar Magallón J., Pérez Armendáriz B. 2017. Inducers of resistance to Botrytis cinerea in postharvest strawberry fruits. Bio Ciencias 4: 1–12. DOI: https://doi.org/10.15741/revbi....
 
49.
Ortiz Araque L.C., Rodoni L.M., Darré M., Ortiz C.M., Civello P.M., Vicente A.R. 2018. Cyclic low dose UV-C treatments retain strawberry fruit quality more effectively than conventional pre-storage single high fluence applications. LWT – Food Science and Technology 92: 304–311. DOI: https://doi.org/10.1016/j.lwt.....
 
50.
Ouhibi C., Attia H., Nicot P., Lecompte F., Vidal V., Lachaâl M., Urban L., Aarrouf J. 2015. Effects of nitrogen supply and of UV-C irradiation on the susceptibility of Lactuca sativa L to Botrytis cinerea and Sclerotinia minor. Plant and Soil 393: 35–46. DOI: https://doi.org/10.1007/s11104....
 
51.
Pan J., Vicente A.R., Martínez G.A., Chaves A.R., Civello P.M. 2004. Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. Journal of the Science of Food and Agriculture 84: 1831–1838. DOI: https://doi.org/10.1002/jsfa.1....
 
52.
Quintero J., Bohorquez Y., Valenzuela C., Solanilla J. 2013. Advances in the application of shortwave ultraviolet light (UVC) in whole and minimally processed fruits and vegetables: review. Revista Tumbaga 1: 29–60. (in Spanish).
 
53.
Rivera-Casignia Á.M., Rivas-Figueroa F., Panimboza-Yanzapanta J.G., Leiva-Mora M. 2017. Effect of iodine citrate of cupper (Citrubact) on Botrytis cinerea Pers in Fragaria vesca L. cv. Albion at Tungurahua province, Ecuator. Centro Agrícola 44: 82–87 (in Spanish).
 
54.
Romanazzi G., Lichter A., Gabler F.M., Smilanick J.L. 2012. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology 63: 141–147. DOI: https://doi.org/10.1016/j.post....
 
55.
Romero Bernal A.R., Contigiani E.V., González H.H.L., Alzamora S.M., Gómez P.L., Raffellini S. 2019. Botrytis cinerea response to pulsed light: Cultivability, physiological state, ultrastructure and growth ability on strawberry fruit. International Journal of Food Microbiology 309: 108311. DOI: https://doi.org/10.1016/j.ijfo....
 
56.
Rupp S., Weber R.W.S., Rieger D., Detzel P., Hahn M. 2017. Spread of Botrytis cinerea strains with multiple fungicide resistance in german horticulture. Frontiers in Microbiology 7: 1–12. DOI: https://doi.org/10.3389/fmicb.....
 
57.
Sharma G., Wu W., Dalal E.N. 2005. The CIEDE2000 colordifference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application 30: 21–30. DOI: https://doi.org/10.1002/col.20....
 
58.
Sinha R.P., Häder D.P. 2002. UV-induced DNA damage and repair: A review. Photochemical and Photobiological Sciences 1: 225–236. DOI: https://doi.org/10.1039/b20123....
 
59.
Song X., Cheng M., Wang B., Huang S., Huang X.. 2013. Automatic liver segmentation from CT images using adaptive fast marching method. Seventh International Conference on Image and Graphics. IEEE: 897–900. DOI: https://doi.org/10.1109/ICIG.2....
 
60.
Stevens C., Khan V.A., Lu J.Y., Wilson C.L., Pusey P.L., Kabwe M.K., Igwegbe E.C.K., Chalutz E., Droby S. 1998. The germicidal and hormetic effects of UV-C light on reducing brown rot disease and yeast microflora of peaches. Crop Protection 17: 75–84. DOI: https://doi.org/10.1016/s0261-....
 
61.
Stevens C., Wilson C.L., Lu J.Y., Khan V.A., Chalutz E., Droby S., Kabwe M.K., Haung Z., Adeyeye O., Pusey L.P., Wisniewski M.E., West M. 1996. Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits. Crop Protection 15: 129–134. DOI: https://doi.org/10.1016/0261-2....
 
62.
Suthaparan A., Solhaug K.A., Stensvand A., Gislerød H.R. 2016. Determination of UV action spectra affecting the infection process of Oidium neolycopersici, the cause of tomato powdery mildew. Journal of Photochemistry and Photobiology B: Biology 156: 41–49. DOI: https://doi.org/10.1016/j.jpho....
 
63.
Timudo-Torrevilla O.E., Everett K.R., Waipara N.W., Boyd-Wilson K.S., Weeds P., Langford G.I., Walter M. 2005. Present status of strawberry fruit rot diseases in New Zealand. New Zealand Plant Protection 58: 74–79. DOI: https://doi.org/10.30843/nzpp.....
 
64.
Usall J., Ippolito A., Sisquella M., Neri F. 2016. Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology 122: 30–40. DOI: https://doi.org/10.1016/j.post....
 
65.
Valencia M.A., Patiño L.F., Herrera-Ramírez J.A., Castañeda D.A., Gómez J.A., Quijano J.C. 2017. Using UV-C radiation and image analysis for fungus control in tomato plants. Optica Pura y Aplicada 50: 369–378. DOI: https://doi.org/10.7149/OPA.50....
 
66.
Valera M. del R., Alvariño L., Iannacone J. 2018. Toxicity of fungicide kresoxim – metil on seven bioindicators of environmental quality. The Biologist (Lima) 16: 299–321. (in Spanish).
 
67.
van Kan J.A.L. 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science 11: 247–253. DOI: https://doi.org/10.1016/j.tpla....
 
68.
van Rijswick C. 2016. World Floriculture Map 2016: Equator Countries Gathering Speed. Royal FloraHolland, Rabobank, 20 pp.
 
69.
Vicente A.R., Pineda C., Lemoine L., Civello P.M., Martinez G.A., Chaves A.R. 2005. UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biology and Technology 35: 69–78. DOI: https://doi.org/10.1016/j.post....
 
70.
Williamson B., Duncan G.H., Harrison J.G., Harding L.A., Elad Y., Zimand G. 1995. Effect of humidity on infection of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycological Research 99: 1303–1310. DOI: https://doi.org/10.1016/S0953-....
 
71.
Yin R., Dai T., Avci P., Jorge A.E.S., de Melo W.C., Vecchio D., Huang Y-Y., Gupta A., Hamblin M.R. 2013. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Current Opinion in Pharmacology 13: 731–762. DOI: https://doi.org/10.1016/j.coph....
 
72.
Zhu M., Riederer M., Hildebrandt U. 2019. UV-C irradiation compromises conidial germination, formation of appressoria, and induces transcription of three putative photolyase genes in the barley powdery mildew fungus, Blumeria graminis f. sp. hordei. Fungal Biology 123: 218–230. DOI: https://doi.org/10.1016/j.funb....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top