Characterization of Aspergillus section Flavi from pistachio soils in Iran
More details
Hide details
Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
Department of Crop Biotechnology and Breeding, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
The University of Arizona, School of Plant Sciences, Tucson, 85721 Arizona, USA
Submission date: 2014-05-25
Acceptance date: 2014-10-23
Corresponding author
Mahmoud Houshyarfard
Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
Journal of Plant Protection Research 2014;54(4):354-362
During 2012, soil samples from commercial pistachio orchards in three major production regions include Rafsanjan (Kerman Province, center of Iran), Damghan (Semnan Province, north-central Iran) and Feyz-Abad (Khorasan-e Razavi Province, northeastern Iran), were assayed on Dichloran Rose-Bengal Chloramphenicol agar (DRBC) and Aspergillus flavus-parasiticus agar media to quantify populations of Aspergillus species from the section Flavi. The mean propagule density of Aspergillus species from the Flavi section [log 10 (CFU/g soil)] was higher in Feyz-Abad (3.06, 2.88–3.24), compared to Damghan (2.55, 2.44–2.65) and Rafsanjan (2.40, 2.26–2.54). A. flavus (69.7, 65.3 and 57.9%), A. parasiticus (19.6, 25.4, and 29.3%), and A. nomius (10.7, 9.3, and 12.8%) were the predominant species in the regions of Rafsanjan, Damghan, and Feyz-Abad, respectively. There were significant differences among sclerotia producing isolates of A. flavus in the sampling regions (p < 0.05). The percentage of sclerotium-producing isolates of A. flavus from Rafsanjan (14.5%) was much lower than Damghan (39.5%) and Feyz-Abad (41.4%). The A. flavus isolates from Damghan, Rafsanjan, and Feyz-Abad were toxigenic at 53.7%, 61.6%, and 60.4%, respectively. In Rafsanjan, aflatoxin B 1 (AFB1), and AFB1 + AFB2 (aflatoxin B 2) ranged from 274 to 553 ppb (393±17.11) and 394 to 3745 ppb, respectively, while AFB1, and AFB1 + AFB2 ranged from 257 to 392 ppb (285±13.18) and 415 to 1658 ppb, respectively, in Damghan. We found 16 and 20 vegetative compatibility groups (VCGs) for 41 and 37 nit mutant producing isolates of A. flavus from Rafsanjan and Damghan, respectively. From Damghan the VCG diversity for A. flavus isolates was greater (54%) than from Rafsanjan (39%). Because there were a few number of sclerotium producing isolates of A. flavus, we did not determine the relationships between sclerotium production with VCGs and/or geographical distribution in the three pistachio production regions. This study was the first to determine the strain and VCG diversity of A. flavus soil isolates from Iranian pistachio orchards.
The authors have declared that no conflict of interests exist.
Abbas H.K., Weaver M.A., Zablotowicz R.M., Horn B.W., Shier W.T. 2005. Relationships between aflatoxin production and sclerotia formation among isolates of Aspergillus section Flavi from the Mississippi Delta. Eur. J. Plant Pathol. 112 (3): 283–287.
Atehnkeng J., Ojiambo P.S., Donner M., Ikotun T., Sikora R.A., Cotty P.J., Bandyopadhyay R. 2008. Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria. Int. J. Food Microbiol. 122 (1): 74–84.
Barros G.G., Chiotta M.L., Reynoso M.M., Torres A.M., Chulze S.N. 2007. Molecular characterization of Aspergillus section Flavi isolates collected from peanut fields in Argentina using AFLPs. J. Appl. Microbiol. 103 (4): 900–909.
Bayman P., Cotty P.J. 1990. Triadimenol stimulata aflatoxin production by Aspergillus flavus in vitro. Mycol. Res. 94 (3): 1020–1025.
Bayman P., Cotty P.J. 1993. Genetic diversity in Aspergillus flavus: association with aflatoxin production and morphology. Can. J. Bot. 71 (1): 23–31.
Bock C.H., Mackey B., Cotty P.J. 2004. Population dynamics of Aspergillus flavus in the air of an intensively cultivated region of southwest Arizona. Plant Pathol. 53 (4): 422–433.
Bui-Klimke T.R., Guclu H., Kensler T.W., Yuan J.M., Wu F. 2014. Aflatoxin regulations and global pistachio trade: insights from social network analysis. PLoS One 9 (3): e92149. DOI: 10.1371/journal.pone.0092149.
Cepeda A., Franco C.M., Fente C.A. 1996. Post-column excitation of aflatoxins using cyclodextrins in liquid chromatography for food analysis. J. Chromatogr. 721 (1): 69–74.
Chang P.K., Yabe K., Yu J. 2004. The Aspergillus parasiticus estAencoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Appl. Environ. Microbiol. 70 (6): 3593–3599.
Clevstrom G., Ljunggren H. 1985. Anatoxin formation and the dual phenomenon in Aspergillus flavus Link. Mycopathologia 92 (3): 129–139.
Cotty P.J. 1988. Aflatoxin and sclerotial production by Aspergillus flavus. Influence of pH. Phytopathology 78: 1250–1253.
Cotty P.J. 1992. Use of native Aspergillus flavus strains to prevent aflatoxin contamination. US United States Patent 5171686 A.
Cotty P.J. 1994. Influence of field application of an atoxigenic strain of Aspergillus flavus on the population of A. flavus infecting cotton bolls and on the aflatoxin content of cottonseed. Phytopathology 84 (11): 1270–1277.
Cove D.J. 1976. Cholorate toxicity in Aspergillus nidulans: the selection and characterisation of chlorate resistant mutants. Heredity 36 (2): 191–203.
Diener U.L., Davis N.D. 1966. Aflatoxin production by isolates Aspergillus flavus. Phytopathology 56 (12): 1390–1393.
Diener U.L., Cole R.J., Sanders T.H., Payne G.A., Lee S.L., Klich M.L. 1987. Epidemiology of aflatoxin formation by Aspergillus flavus. Annu. Rev. Phytopathol. 25: 249–270.
Ehrlich K.C., Montalbano B.G., Cotty P.J. 2007. Analysis of single nucleotide polymorphisms in three genes shows evidence for genetic isolation of certain Aspergillus flavus vegetative compatibility groups. FEMS Microbiol. Lett. 268 (2): 231–236.
Fente C.A., Ordaz J.J., Vazquez B.I., Franco C.M., Cepeda A. 2001. New additive for culture media for rapid identification of aflatoxin-producing Aspergillus spp. Appl. Environ. Microbiol. 67 (10): 4858–4862.
Geiser D.M., Dorner J.W., Horn B.W., Taylor J.W. 2000. The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genet. Biol. 31 (3): 169–179.
Giorni P., Magan N., Pietri A., Bertuzzi T., Battilani P. 2007. Studies on Aspergillus section Flavi isolated from maize in Northern Italy. Int. J. Food Microbiol. 113 (3): 330–338.
Gourama H., Bulerman L.B. 1995. Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds, a review. J. Food Prot. 58 (12): 1395–1404.
Grubisha L.C., Cotty P.J. 2009. Twenty-four microsatellite markers for the aflatoxin-producing fungus Aspergillus flavus. Mol. Ecol. Resour. 9 (1): 264–267.
Grubisha L.C., Cotty P.J. 2010. Genetic isolation among sympatric vegetative compatibility groups of the aflatoxin-producing fungus Aspergillus flavus. Mol. Ecol. 19 (2): 269–280.
Haddadian Z., Mirabolfathy M., Eatebarian H.R., Aboo-Hossein G. 2004. Relationship between aflatoxin and sclerotia production of Aspergillus flavus isolates from pistachio. p. 63. In: Proc. 16th Iranian Plant Production Congress, 28 August–1 September 2004, Tabriz, Iran, 384 pp.
Heydarian R., Javan Nikkhah M., Sharifi Tehrani A. 2007. A study of the genetic diversity of Aspergillus flavus Link population. Iranian J. Agric. Sci. 38 (1): 173–179.
Horn B.W. 2003. Ecology and population biology of aflatoxigenic fungi in soil. Toxin Reviews. J. Toxicol. 22 (2–3): 351–379.
Horn B.W., Greene R.L. 1995. Vegetative compatibility within populations of Aspergillus flavus, A. parasiticus, and A. tamarri from a peanut field. Mycologia 87 (3): 324–332.
Horn B.W., Dorner J.W. 1999. Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of Aspergillus flavus along a transect within the United States. Appl. Environ. Microbiol. 65 (4): 1444–1449.
Horn B.W., Greene R.L., Sobolev V.S., Dorner, J.W., Powell J.H., Layton R.C. 1996. Association of morphology and mycotoxin production with vegetative compatibility groups in Aspergillus flavus, A. parasiticus, and A. tamarii. Mycologia 88 (4): 574–587.
Hua S.H.T., McAlpin C.E., Chang P.K., Sarreal S.B.L. 2012. Characterization of aflatoxigenic and non-aflatoxigenic Aspergillus flavus isolates from pistachio. Mycotoxin Res. 28 (1): 67–75.
IARC 1993. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 56. World Health Organization, International Agency for Research on Cancer, Lyon, France, 571 pp.
Jamali M., Ebrahimi M.A., Karimipour M., Shams-Ghahfarokhi M., Dinparast-Djadid N., Kalantari S., Pilehvar-Soltanahmadi Y., Amani A., Razzaghi-Abyaneh M. 2012. An insight into the distribution, genetic diversity, and mycotoxin production of Aspergillus section Flavi in soils of pistachio orchards. Folia Microbiol. 57 (1): 27–36.
King D.A., Hocking A.D., Pitt J.I. 1979. Dichloran-rose Bengal medium for enumeration and isolation of moulds from foods. Appl. Environ. Microbiol. 37 (5): 959–964.
Klich M.A. 2002. Identification of Common Aspergillus Species. The Centraalbureau voor Schimmelcultures (CBS) Fungal Biodiversity Centre, Utrecht, The Netherlands, 116 pp.
Klich M.A., Pitt J.I. 1988. A Laboratory Guide to Common Aspergillus Species and their Teleomorphs. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Division of Food Processing, North Ryde, Australia, 116 pp.
Leslie J.F. 1996. Fungal vegetative compatibility – promises and prospects. Phytoparasitica 24 (1): 3–6.
Manonmani H.K., Anand S., Chandrashekar A., Rati E.R. 2005. Detection of aflatoxigenic gungi in selected food commodities by PCR. Process Biochem. 40 (8): 2859–2864.
Mehan V.K., Chohan J.S. 1973. Aflatoxin B1 producing potential of isolates of Aspergillus flavus Link ex Fries from cotton, maize and wheat. Mycopathologia Applicata 49 (3): 263–274.
Mirabolfathy M., Moradi Ghahderjani M., Waliyar F. 2005. Variability in aflatoxicogenic potential and sclerotial production of A. flavus isolates from pistachio in Iran. IV International Symposium on Pistachios and Almonds 67: 101–104.
Mohammadi A.H., Banihashemi Z., Haghdel M. 2009. Identification and prevalence of Aspergillus species in soils of Fars and Kerman provinces of Iran and evaluation of their aflatoxin production. Rostaniha 10 (1): 8–30.
Mojthahedi H., Danesh D., Haghighi B., Barnet R. 1978. Postharvest pathology and mycotoxin contamination of Iranian pistachio nuts. Phytopathology 68 (12): 1800–1804.
Moradi M., Ershad D., Mirabolfathy M., Panahi B. 2004. The role of plant debris, soil and manure on population density of Aspergillus flavus and Aspegillus niger groups in pistachio orchards of Kerman province (in Persian). Iran J. Plant Pathol. 40 (4): 221–234.
Moradi M., Javanshah A. 2005. Distribution of aflatoxin in processed pistachio nut terminals. IV International Symposium on Pistachios and Almonds. Acta Hortic. (ISHS) 726: 431–436.
Moradi M.G., Hokmabadi H., Mirabolfathy M. 2010. Density Fluctuations of Two Major Aspergillus Species Airborne Spores in Pistachio Growing Regions of Iran. Int. J. Nuts Related Sci. 1 (1): 54–64.
Novas M.V., Cabral D. 2002. Association of mycotoxin and sclerotia production with compatibility groups in Aspergillus flavus from peanut in Argentina. Plant Dis. 86 (3): 215–219.
Oktay H.I., Heperkan D., Yelboga E., Karaguler N.G. 2011. Aspergillus flavus – primary causative agent of aflatoxins in dried figs. Mycotaxon 115: 425–433.
Papa K.E. 1986. Heterokaryon incompatibility in Aspergillus flavus. Mycologia 78: 98–101.
Pildain M.B., Vaamonde G., Cabral D. 2004. Analysis of population structure of Aspergillus flavus from peanut based on vegetative compatibility, geographic origin, mycotoxin and sclerotia production. Int. J. Food Microbiol. 93 (1): 31–40.
Pitt J.I., Hocking A.D. 1997. Primary keys and miscellaneous fungi. pp. 59–171. In: “Fungi and Food Spoilage”. 2nd ed. Blackie Academic and Professional. London, Weinheim, New York, Tokyo, Melbourne, Madras, 519 pp.
Pons W.A., Robertson J.A., Goldblatt L.A. 1966. Objective fluorometric measurement of aflatoxins on TLC plates. J. Am. Oil Chem. Soc. 43: 665–669.
Rahimi P., Sharidnabi B., Bahar M. 2007. Aspergillus species isolated from pistachio and determination of their aflatoxin production. Rostaniha 8: 30–42.
Robens J.F., Brown R.L. 2004. Aflatoxin/Fumonisin Elimination and Fungal Genomics Workshops, San Antonio, Texas, 23–26 October 2002. Mycopathology 157 (Special issue): 393–505.
Saito M., Tsuruta O., Siriacha P., Kawasugi S., Manabe M., Buangsuwon D. 1986. Distribution and aflatoxin productivity of the atypical strains of Aspergillus flavus isolated from soils in Thailand. Proc. Jpn. Assoc. Mycotoxicol. 24: 41–46.
Sanchis V., Vinas I., Jimenez M., Hernandez E. 1984. Aflatoxins and A. flavus in perharvest corn in Valencia (Spain). Microbiologie-Aliments-Nutrition 2: 193‒197.
SAS 1999. SAS procedures guide, version 8.0. Cary, NC: SAS Institute, Inc. 1994 pp.
Sedaghat R. 2011. Constraints in production and marketing of Iran’s pistachio and the policies; an application of the garret ranking technique. Int. J. Nuts Related Sci. 2 (2): 27–30.
St. Leger R.J., Screen S.E., Shams-Pirzadeh B. 2000. Lack of host specialization in Aspergillus flavus. Appl. Environ. Microbiol. 66 (1): 320–324.
Stark A.A., Demain A.L. 1980. Genetic activity and hazards of mycotoxins. American Society for Microbiology (ASM) News 46: 80–83.
Sweeney M.J., Dobson A.D.W. 1998. Mycotoxin production by Aspergillus, Fusarium and Pencillium species. Int. J. Food Microbiol. 43 (3): 141–158.
Shahidi B.G.H. 2004. Incidence of aflatoxin producing fungi in early split pistachio nuts of Kerman. Iranian J. Biol. Sci. 4 (2): 199–202.
Speijers G.J.A., Speijers M.H.M. 2004. Combined toxic effects of mycotoxins. Toxicol. Lett. 153 (1): 91–98.
Woo L.L., Egner P.A., Belanger C.R., Wattanawaraporn R., Trudel L.J., Croy, R.G., Groopman J.D., Essigmann J.M., Wogan G.N. 2011. Aflatoxin B1-DNA adduct formation and mutagenicity in livers of neonatal male and female B6C3F1 mice. Toxicol. Sci. 122 (1): 38–44.
Journals System - logo
Scroll to top