Evaluation of freshly prepared juice from garlic (Allium sativum L.) as a biopesticide against the maize weevil, Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae)
More details
Hide details
Department of Plant Physiology, Institute for Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Worringerweg 1, D-52056 Aachen, Germany
Department of Plant Health Management, Michael Okpara University of Agriculture Umudike, P.M.B. 7267 Umuahia, Abia State, Nigeria
Submission date: 2013-10-08
Acceptance date: 2014-04-24
Corresponding author
Ifeanyi Daniel Nwachukwu
Department of Plant Physiology, Institute for Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Worringerweg 1, D-52056 Aachen, Germany
Journal of Plant Protection Research 2014;54(2):132-138
Freshly prepared garlic (Allium sativum L.) juice, containing the antimicrobial allicin, was evaluated as a possible grain protectant against the maize weevil, Sitophilus zeamais (Motsch.). Each experiment was set out in Completely Randomized Design (CRD) with four replications, and there was a control treatment. Adult mortality and weight loss percentage were investigated. There was an observed increase in adult mortality following days of exposure in all treatments. Statistically significant (p < 0.05) reduced grain loss was also observed in all the treatments when compared with the control. The juice samples were freshly prepared from an indigenous Nigerian garlic cultivar (GUN) and a cultivar purchased from a supermarket in Germany (GAG). These garlic juice samples exhibited lethal effects causing at least 90% adult mortality in contact toxicity tests. The amount of allicin in GUN was 1.88 mg/ml according to High Pressure Liquids Chromatography (HPLC) analysis, while the amount of allicin in GAG was 3.50 mg/ml. This study highlights the potential of A. sativum containing allicin for biorational control of maize grains against S. zea,mais infestation and damage.
The authors have declared that no conflict of interests exist.
Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18 (2): 265–267.
Adedire C.O. 2001. Biology, ecology and control of insect pests of stored cereal grains. p. 59–94. In: “Pests of Stored Cereals and Pulses in Nigeria” (T.I. Ofuya, N.E.S. Lale, eds.). Dave Collins Publishers, Nigeria, 174 pp.
Adedire C.O., Ajayi T.S. 1996. Assessment of insecticidal properties of some plants as grain protectants against the maize weevil, Sitophilus zeamais (Motsch.). Nig. J. Entomol. 13: 93–101.
Apitz-Castro R., Cabrera S., Cruz M.R., Ledezma E., Jain M.K. 1983. Effects of garlic extract and of three pure components isolated from it on human platelet aggregation, arachidonate metabolism, release reaction and platelet ultrastructure. Thromb Res. 32 (2): 155–169.
Arannilewa S.T., Ekrakene T., Akinneye J.O. 2006. Laboratory evaluation of four medicinal plants as protectants against the maize weevil, Sitophilus zeamais Motsch. Afr. J. Biotechnol. 5 (21): 2032–2036.
Asawalam E.F., Emosairue S.O. 2006. Comparative efficacy of Piper guineense Schum and Thonn and Pirimiphos methyl on [Sitophilus zeamais (Motschulsky)]. Trop. Subtrop. Agroecosys. 6: 143–148.
Bautista D.M., Movahed P., Hinman A., Axelsson H.E., Sterner O. 2005. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl. Acad. Sci. 102 (34): 12248–12252.
Block E. 1985. The chemistry of garlic and onions. Sci. Am. 252 (3): 94–99.
Block E., Ahmad S., Jain M.K., Crecely R.W., Apitz-Castro R., Cruz M.R. 1984. (E, Z)-Ajoene: a potent antithrombotic agent from garlic. J. Am. Chem. Soc. 106 (26): 8295–8296.
Cavallito C.J., Bailey J.H. 1944. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J. Am. Chem. Soc. 66 (11): 1950–1951.
Cavallito C.J., Buck J.S., Suter C.M. 1944. Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structure. J. Am. Chem. Soc. 66 (11): 1952–1954.
Curtis H., Noll U., Störmann J., Slusarenko A.J. 2004. Broadspectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi and Oomycetes. Physiol. Mol. Plant Pathol. 65 (2): 79–89.
Fahey J.W., Zalcmann A.T., Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56 (1): 5–51.
FAO 1985. Prevention of Post-harvest Food Losses: A Training Manual. FAO, Rome. www.fao.org/docrep/x00039e [Accessed: September 19, 2013].
Gonzalez-Coloma A., Reina M., Diaz C.E., Fraga B.M. 2010. Natural product-based biopesticides for insect control. p. 237–268. In: “Comprehensive Natural Products” Vol. 3. (L. Mander, H.W. Liu, eds.), Elsevier, Oxford, 1315 pp.
Hamed R.K.A., Ahmed S.M.S., Abotaleb A.O.B., El-Sawaf B.M. 2012. Efficacy of certain plant oils as grain protectants against the rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae) on wheat. Egypt. Acad. J. Biol. Sci. 5 (2): 49–53.
Ho S.H., Koh L., Ma Y., Huang Y., Sim K.Y. 1996. The oil of garlic, Allium sativum L. (Amaryllidaceae), as apotential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biol. Technol. 9 (1): 41–48.
Huang Y., Chen S.X., Ho S.H. 2000. Bioactivities of methyl allyl disulfide and diallyltrisulfide from essential oil of garlic to two species of stored-product pests, Sitophilus zeamais (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 93 (2): 537–543.
Huang Y., Tan J.M.W., Kini S., Ho H. 1997. Toxic and antifeedant action of nutmeg oil against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. J. Stored Prod. Res. 33 (4): 289–298.
Iberl B., Winkler G., Knobloch K. 1990. Products of allicin transformation: ajoenes and dithiins, characterization and their determination by HPLC. Planta Medica 56 (2): 202–211.
IITA 2009. Cereals and legumes systems: Maize. http://old.iita.org/cms/detail... ?zoneid=63&articleid=273 [Accessed: September 20, 2013].
Isman M.B. 2000. Plant essential oils for pest and disease management. Crop Prot. 19 (8–10): 603–608.
Jain M.K., Apitz-Castro R. 1987. Garlic: molecular basis of the putative ‘vampire-repellant’ action and other matters related to heart and blood. Trends Biochem. Sci. 12 (C): 252–254.
Jordt S.E., Bautista D.M., Chuang H.H., McKemy D.D., Zygmunt P.M., Högestätt E.D., Meng I.D., Julius D. 2004. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427 (6971): 260–265.
Krest I., Keusgen M. 2002. Biosensoric flow-through method for the determination of cysteine sulfoxides. Chim. Acta 469 (2): 155–164.
Lale N.E.S. 1992. A laboratory study of the comparative toxicity of products from three spices to the maize weevil. Postharvest Biol. Technol. 2 (1): 61–64.
Lalla F.D., Ahmed B., Omar A., Mohieddine M. 2013. Chemical composition and biological activity of Allium sativum essential oils against Callosobruchus maculatus. J. Environ Sci. Toxicol. Food Technol. 3 (1): 30–36.
Lee B., Annis P.C., Tumaalii F., Choi W. 2004. Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain insects. J. Stored Prod. Res. 40 (5): 553–564.
Macpherson L.J., Geierstanger B.H., Viswanath V., Bandell M., Eid S.R. 2005. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15 (10): 929–934.
Miron T., Rabinkova A., Mirelman D., Wilchek M., Weiner L. 2000. The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim. Biophys. Acta 1463 (1): 20–30.
Nwachukwu I.D., Gruhlke M.C.H., Slusarenko A.J. 2012. Sulfur and sulfur compounds in plant defence. Nat. Prod. Commun. 7 (3): 395–400.
Odeyemi O.O. 1993. Insecticidal properties of certain indigenous plant oils against Sitophilus zeamais Mots. Appl. Entomol. Phytopathol. 60 (1–2): 19–27.
Ofuya T.I., Olotuah O.F., Ogunsola O.J. 2010. Fumigant toxicity of crushed bulbs of two Allium species to Callosobruchus malulatus (Fabricius) (Coleoptera: Bruchidae). Chilean J. Agric. Res. 70 (3): 510–514.
Portz D., Koch E., Slusarenko A.J. 2008. Effects of garlic (Allium sativum) juice containing allicin on Phytophthora infestans and downy mildew of cucumber caused by Pseudoperonospora cubensis. Eur. J. Plant Pathol. 122 (1): 197–206.
Qi I.T., Burkholder W.E. 1981. Protection of stored wheat from the granary weevil by vegetable oils. J. Econ. Entomol. 74 (5): 502–505.
Regnault-Roger C., Hamraoui A., Holeman M., Theron E., Pinel R. 1993. Insecticidal effect of essential oils from mediterranean plants upon Acanthoscelides obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). J. Chem. Ecol. 19 (6): 1233–1244.
Shaaya E., Ravid U., Paster N., Juven B., Zisman U., Pissarev V. 1991. Fumigant toxicity of essential oils against four major stored-product insects. J. Chem. Ecol. 17 (3): 499–504.
Slusarenko A.J., Patel A., Portz D. 2008. Control of plant diseases by natural products: Allicin from garlic as a case study. Eur. J. Plant Pathol. 121 (3): 313–322.
Staba John E., Lash L., Staba Joyce E. 2001. A commentary on the effects of garlic extraction and formulation on product composition. J. Nutr. 131: 1118S–1119S.
Udo I.O. 2005. Evaluation of the potential of some local spices as stored grain protectants against the maize weevil Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). J. Appl. Sci. Environ. Manage. 9 (1): 165–168.
Van Etten H.D., Mansfield J.W., Bailey J.A., Farmer E.E. 1994. Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6 (9): 1191–1192.
Voigt M., Wolf E. 1986. Knoblauch: HPLC-Bestimmung von Knoblauchwirkstoffen in Extrakten, Pulver und Fertigarzneimitteln. [HPLC determination of the active ingredients in garlic extracts, powder and finished medicinal products]. Dtsch. Apoth. Ztg. 126: 591–593.
Wang H., Woolf C.J. 2005. Pain TRPs. Neuron 46 (1): 9–12.
Yang F-L., Zhu F., Lei C-L. 2012. Insecticidal activities of garlic substances against adults of grain moth, Sitotroga cerealella (Lepidoptera: Gelechidae). Insect Sci. 19 (2): 205–212.
Zhou H.Y., Zhao N.N., Du S.S., Yang K., Wang C.F., Liu Z.L., Qiao Y.J. 2012. Insecticidal activity of the essential oil of Lonicera japonica flower buds and its main constituent compounds against two grain storage insects. J. Med. Plants Res. 6 (5): 912–917.
Journals System - logo
Scroll to top