Evaluation of the antagonistic potential of Trichoderma spp. against Fusarium oxysporum F.28.1A
Huu Ngoc Tran 1, B-C
Thuc Vinh Le 1, A,C,E-F
More details
Hide details
Faculty of Crop Science, College of Agriculture, Can Tho University, Viet Nam
Biotechnology Research and Development Institute, Can Tho University, Viet Nam
Experimental and Practical Area, An Giang University – Vietnam National University, Ho Chi Minh City, Viet Nam
Tropical Crop Science Laboratory, Faculty of Agriculture, Kagoshima University, Japan
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2022-05-27
Acceptance date: 2022-10-10
Online publication date: 2023-02-17
Corresponding author
Thuc Vinh Le   

Faculty of Crop Science, College of Agriculture, Can Tho University, Viet Nam
Journal of Plant Protection Research 2023;63(1):13-26
  • The isolated strains Trichoderma were able to produce enzymes including chitinase, exo-β-1,3-glucanase, and endo-β-1,3-glucanase at levels of 0.34–0.44, 0.017–0.034, and 0.032–0.121 UI mL-1, respectively.
  • The experimental results revealed that supplementing with a mixture of the 5 isolated strains of Trichoderma reduced the disease’s prevalence by 35%.
The objective of this study was to evaluate the antagonistic activity of Trichoderma spp. against wild pathogen Fusarium oxysporum F.28.1A, which causes wilt disease on sesame. Twenty-six isolates of Trichoderma spp. isolated from soil samples were tested to control F. oxysporum F.28.1A. Prescreening showed that five isolates were T-02B1, T-18B2, T-20B1, T-28B1, and T-29A1, based on the lowest values of colony radius of F. oxysporum F.28.1A. The selected isolates were identified by their ITS region as T. yunnanense T-02B1, T. lentiforme T-18B2, T. asperellum T-20B1, T. hamatum T-28B1, and T. hamatum T-29A1, with similarities around 96–100%. The isolates selected were able to produce enzymes including chitinase, exo-β-1,3-glucanase, and endo-β-1,3-glucanase at levels of 0.34–0.44, 0.017–0.034, and 0.032–0.121 UI · ml–1, respectively, which were considered to be a mechanism to prevent the growth of F. oxysporum F.28.1A. The isolates tested were applied in soil pots to prevent damage from F. oxysporum F.28.1A as a following experiment. The greenhouse experiment was arranged in a completely randomized design with 10 treatments, including a negative control, application of only F. oxysporum F.28.1A, application of both F. oxysporum F.28.1A and fungicide chemicals, application of both F. oxysporum F.28.1A and Trichoderma spp. DHCT, application of T. yunnanense T-02B1, application of T. lentiforme T-18B2, application of T. asperellum T-20B1, application of T. hamatum T-28B1, application of T. hamatum T-29A1 and a mixture of the five selected isolates of Trichoderma spp. with their total population equal to that in individual strain application. The results showed that the five mixed isolates of Trichoderma had a synergistic effect on the reduction of the disease’s prevalence by 35% compared to the negative control treatment.
This project was funded by the author’s affiliated institution.
Lidia Irzykowska
The authors have declared that no conflict of interests exist.
Ahmed H.A., Abdel-Gayed M.A. 2017. Safe approach to control Fusarium oxysporum in sesame crop. Zagazig Journal of Agricultural Research 44: 2529–2540. DOI: 10.21608/ZJAR.2017.51339.
Akrami M., Golzary H., Ahmadzadeh M. 2011. Evaluation of different combinations of Trichoderma species for controlling Fusarium rot of lentil. African Journal of Biotechnology 10 (14): 2653–2658. DOI: 10.5897/AJB10.1274.
Ara A., Akram A., Ajmal M., Akhund S., Nayyar B.G., Seerat W., Chaudhry S.M. 2017. Histopathological studies of sesame (Sesamum indicum) seedlings infected with Fusarium oxysporum. Plant Pathology & Quarantine 7 (1): 82–90. DOI: 10.5943/ppq/7/1/10.
Asad S.A. 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases – A review. Ecological Complexity 49: 100978. DOI: 10.1016/j.ecocom.2021.100978.
Belay Y. 2018. Screening of Fusarium wilt, bacterial blight and phyllody diseases resistant sesame genotypes in sesame growing areas of northern Ethiopia. Journal of Agriculture and Ecology Research International 15 (2): 1–12. DOI: 10.9734/JAERI/2018/41414.
Bhat M.N., Mesta R., Yenjerappa S.T., Tatagar M.H., Sardana H.R., Singh D., Vennila S., Sabir N., Ahmad M. 2016. Biological control of Fusarium wilt of chillies using Trichoderma spp. Indian Journal of Horticulture 73 (1): 74–77. DOI: 10.5958/0974-0112.2016.00021.9.
Bruce A., Srinivasan U., Staines H.J., Highley T.L. 1995. Chitinase and laminarinase production in liquid culture by Trichoderma spp. and their role in biocontrol of wood decay fungi. International Biodeterioration & Biodegradation 35 (4): 337–353. DOI: 10.1016/0964-8305(95)00047-3.
Dong-Hua L., Lin-Hai W., Yan-Xin Z., Hai-Xia L., Xiao-Qiong Q., Wen-Liang W., Xiu-Rong Z. 2012. Pathogenic variation and molecular characterization of Fusarium species isolated from wilted sesame in China. African Journal of Microbiology Research 6: 149–154. DOI: 10.5897/AJMR11.1081.
Edison L.K., Shiburaj S., Pradeep N.S. 2018. Microbial beta glucanase in agriculture. Advances in microbial biotechnology: Current trends and future prospects. Apple Academic Press, 590 pp.
Egonyu J.P., Kyamanywa S., Anyanga W., Ssekabembe C.K. 2005. Review of pests and diseases of sesame in Uganda. African Crop Science Conference Proceedings 7 (3): 1411–1416.
El-Fiki A.I.I., Mohamed F.G., El-Deeb A.A., Khalifa M.M.A. 2004. Some applicable methods for controlling sesame charcoal rot disease (Macrophomina phaseolina) under greenhouse conditions. Egyptian Journal of Phytopathology 32: 87–101.
FAOSTAT. Food and Agriculture Organization Statistical Databases. 2021. [Available on: http://faostat.fao.org/] [Accessed on: 19 June 2022].
Jyothi B., Ansari N.A., Vijay Y., Anuradha G., Sarkar A., Sudhakar R., Siddiq E.A. 2011. Assessment of resistance to Fusarium wilt disease in sesame (Sesamum indicum L.) germplasm. Australasian Plant Pathology 40 (5): 471–475. DOI: 10.1007/s13313-011-0070-x.
Kakraliya S., Choskit D., Pandit D., Abrol S., 2017. Effect of bioagents, neem leaf extract and fungicides against Alternaria leaf blight of wheat (Triticum aestivum L.). Natural Products Chemistry & Research 6: 23–34. DOI: 10.4172/2329-6836.1000295.
Kaur R., Kalia A., Lore J.S., Kaur A., Yadav I., Sharma P., Sandhu J.S. 2021. Trichoderma sp. endochitinase and β-1,3-glucanase impede Rhizoctonia solani growth independently, and their combined use does not enhance impediment. Plant Pathology 70 (6): 1388–1396. DOI: 10.1111/ppa.13381.
Khamari B., Beura S.K., Ranasingh N. 2018. Status of sesame diseases grown in different agroclimatic zones of Odisha. International Journal of Current Microbiology and Applied Sciences 7 (11): 945–948. DOI: 10.20546/ijcmas.2018.711.110.
Kim J.Y., Kwon H.W., Lee D.H., Ko H.K., Kim S.H. 2019. Isolation and characterization of airborne mushroom damaging Trichoderma spp. from indoor air of cultivation houses used for oak wood mushroom production using sawdust media. The Plant Pathology Journal 35 (6): 674–683. DOI: 10.5423/PPJ.FT.10.2019.0261.
Komarek M., Cadkova E., Chrasny V., Boras F., Bollinger J. 2010. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environment International 36 (1): 138–151. DOI: 10.1016/j.envint.2009.10.005.
Kotasthane A., Agrawal T., Kushwah R., Rahatkar O.V. 2015. In vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology 141 (3): 523–543. DOI: 10.1007/s10658-014-0560-0.
Kumar M., Brar A., Yadav M., Chawade A., Vivekanand V., Pareek N. 2018. Chitinases potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture 8: 88–100. DOI: 10.3390/agriculture8070088.
Levy O.N., MellerHarel Y., Haile Z.M., Elad Y., Rav-David E., Jurkevitch E., Katan J. 2015. Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathology 64 (2): 365–374. DOI: 10.1111/ppa.12255.
Li C., Pang A.P., Yang H., Roụing Lv., Zhou Z., Wu F.G., Lin F. 2019. Tracking localization and secretion of cellulase spatiotemporally and directly in living Trichoderma reesei. Biotechnol Biofuels 12: 1–12. DOI: 10.1186/s13068-019-1538-0.
Li Y., Sun R., Yu J., Saravanakumar K., Chen J. 2016. Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian Journal Microbiology 56 (3): 318–327. DOI: 10.1007/s12088-016-0581-9.
Mahdy A.M.M., Nawal A.E., Faten M., El-Wakil A.A. El-Wakil D.A. 2007. Effect of antagonistic fungi on the growth and control of Macrophomina phaseolina and Fusarium oxysporum the causal agents of charcoal rot and wilt of sesame. Annals of Agriculture Science, Moshtohor 45: 577–585.
Mahmoud A.F., Abdalla O.A. 2018. Biocontrol efficacy of Trichoderma spp. against sesame wilt caused by Fusarium oxysporum f. sp. sesami. Archives of Phytopathology and Plant Protection 51: 277–287. DOI: 10.1080/03235408.2018.1471837.
Matrood A.A., Khrieba M.I., Okon O.G. 2020. Synergistic interaction of Glomus mosseae T. and Trichoderma harzianum R. in the induction of systemic resistance of Cucumis sativus L. to Alternaria alternata. Plant Science Today 7 (1): 101–108. DOI: 10.14719/pst.2020.7.1.629.
Mei L.I., Hua L.I.A.N., Su X.L., Ying T.I.A.N., Huang W.K., Jie M.E.I., Jiang X.L. 2019. The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology. Journal of Integrative Agriculture 18 (3): 607–617. DOI: 10.1016/S2095-3119(18)62057-X.
Monteiro V.N., do Nascimento Silva R., Steindorff A.S., Costa F.T., Noronha E.F., Ricart C.A.O., de Sousa M.V., Vainstein M.H., Ulhoa C.J. 2010. New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Current Microbiology 61: 298–305. DOI: 10.1007/s00284-010-9611-8.
Myint D., Gilani S.A., Kawase M., Watanabe K.N. 2020. Sustainable sesame (Sesamum indicum L.) production through improved technology: An overview of production, challenges, and opportunities in Myanmar. Sustainability 12 (9): 3515–3527. DOI: 10.3390/su12093515.
Nehra S., Gothwal R.K., Varshney A.K., Solanki P.S., Chandra S., Meena P., Trivedi P.C., Ghosh P. 2021. Biomanagement of Fusarium spp. associated with oil crops. p. 453–474. In: “Microbiome Stimulants for Crops” (J. White, A. Kumar, S. Droby, eds.). Woodhead Publishing. DOI: 10.1016/B978-0-12-822122-8.00026-1.
Nelson N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153 (2): 375–380. DOI: 10.1016/S0021-9258(18)71980-7.
Nuangmek W., Aiduang W., Kumla J., Lumyong S., Suwannarach N. 2021. Evaluation of a newly identified endophyticfungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of Muskmelon. Frontiers Microbiology 12: 410-424. DOI: 10.3389/fmicb.2021.634772.
Oljira A.M., Hussain T., Waghmode T.R., Zhao H., Sun H., Liu X., Wang X., Liu B. 2020. Trichoderma enhances net photosynthesis, water use efficiency, and growth of wheat (Triticum aestivum L.) under salt stress. Microorganisms 8: 1565–1583. DOI: 10.3390/microorganisms8101565.
Orpin C.G. 1977. The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. Journal of General Microbiology 99: 215–218. DOI: 10.1099/00221287-99-1-215.
Parikh K., Jha A. 2012. Biocontrol features in an indigenous bacterial strain isolated from agricultural soil of Gujarat, India. Journal of Soil Science and Plant Nutrition 12 (2): 245–252. DOI: 10.4067/S0718-95162012000200004.
Patel S., Saraf M. 2017. Biocontrol efficacy of Trichoderma asperellum MSST against tomato wilting by Fusarium oxysporum f. sp. lycopersici. Archives of Phytopathology and Plant Protection 50 (5-6): 228-238. DOI: 10.1080/03235408.2017.1287236.
Puyam A., Srivastava M., Singh A. 2013. Effect of different physiological parameters on growth and sporulation of Trichoder maviride. Plant Disease Research 28 (2): 146–151.
Rahman A., Bhattarai S., Akbar D., Thomson M., Trotter T., Timilsina S. 2020. Market analysis of sesame seed. CQUniversity. Report. DOI: https://doi.org/10.25946/15079....
Rai D., Tewari A.K. 2016. Evaluation of different carbon and nitrogen sources for better growth and sporulation of T. harzianum (Th14). Journal of Agricultural Biotechnology and Sustainable Development 8 (8): 67–70. DOI: 10.5897/JABSD2016.0262.
Ramada M.H.S., Steindorff A.S., Bloch Jr C., Ulhoa C.J. 2016. Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose. Proteomics 16: 477–490. DOI: 10.1002/pmic.201400546.
Saba H., Vibhash D., Manisha M., Prashant K.S., Farhan H., Tauseef A. 2012. Trichoderma a promising plant growth stimulator and biocontrol agent. Mycosphere 3 (4): 524–531. DOI: 10.5943/mycosphere/3/4/14.
Sallam N.M.A., Eraky A.M.I., Sallam A. 2019. Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Molecular Biology Report 46: 4463–4470. DOI: 10.1007/s11033-019-04901-9.
Selima K. 2018. Integrated disease management strategy of Fusarium oxysporum f. sp. sesami causing wilt of sesame. Journal Mycopathology Research 56: 89–99.
Silva R.N., Monteiro V.N., Steindorff A.S., Gomes E.V., Noronha E.F., Ulhoa C.J. 2019. Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biology 123: 565–583. DOI: 10.1016/j.funbio.2019.06.010.
Su D., Ding L., He S. 2018. Marine-derived Trichoderma species as a promising source of bioactive secondary metabolites. Mini Reviews in Medicinal Chemistry 18: 1702–1713. DOI: 10.2174/1389557518666180727130826.
Sundaramoorthy S., Balabaskar P. 2013. Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Journal of Applied Biology and Biotechnology 1 (3): 36–40. DOI: 10.7324/JABB.2013.1306.
Trang C.T.T, Thuc L.V., Xuan L.N.T., Huu T.N. Khuong N.Q. 2021. Isolation, characterization and evaluation of potential to cause the wild disease in sesame (Sesamum indicum L.) by Fusarium spp. in Chau Phu district, An Giang province. Science and Technology Journal of Agriculture & Rural Development 17: 23–30. (English abstract).
Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. 2008. Trichoderma – plant – pathogen interaction. Soil Biology Biochemestry 40: 1–10. DOI: 10.1016/j.soilbio.2007.07.002.
White T.J., Bruns T., Lee S.J.W.T., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18 (1): 315–322.
Yu Z.F., Qiao M., Zhang Y., Zhang K.Q. 2007. Two new species of Trichoderma from Yunnan, China. Antonie van Leeuwenhoek 92: 101–108. DOI: 10.1007/s10482-006-9140-4.
Zenawi G., Mizan A. 2019. Effect of nitrogen fertilization on the growth and seed yield of sesame (Sesamum indicum L.). International Journal of Agronomy 2019: Article ID 5027254.DOI: 10.1155/2019/5027254.
Ziedan E.S.H., Sadek Elewa I., Mostafa H.M., Sahab A.F. 2011. Application of Mycorrhizae for controlling root diseases of sesame. Journal Plant Protection Research 51 (4): 355–361. DOI: 10.2478/v10045-011-0058-0.
Journals System - logo
Scroll to top